首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   12篇
  国内免费   24篇
地球物理   6篇
地质学   154篇
海洋学   1篇
自然地理   3篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   39篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
21.
杜菊民 《地质学报》2009,83(7):910-922
内蒙古大青山属我国典型的板内造山带阴山山脉的南部山系,其西段缺少大型低角度推覆构造及大型深成岩对前期演化历史的干扰,是研究阴山板内造山特点及过程的理想区域。通过对大青山西段的构造进行几何学和运动学的分析表明,古老结晶基底以逆冲推覆及基底褶皱的形式广泛的巻入中生代构造变形,以及先存构造样式的广泛复活并对后期地层沉积和断层发育的控制作用是内蒙古大青山地区中生代板内造山的两个基本特征。这些变形特征反映了阴山带板内造山过程中,是以结晶基底为受力层,并控制上覆盖层进行构造变形的,进而表明板内造山主要是由水平挤压应力造成的。结合研究区构造变形特点及邻区中生代构造地质情况的分析认为,晚侏罗世时期之所以在阴山带形成强烈的板内造山运动,是由其北部西伯利亚板块与蒙古褶皱带碰撞产生的板缘应力的远程传递,以及其南侧强硬的鄂尔多斯地块的阻挡共同作用而形成的。  相似文献   
22.
The Ordovician Turquoise Bluff Slate in northeastern Tasmania is a 2?km-thick sequence of deep-marine siliceous black slates. It is dominated by meta-siltstones with bimodal grainsize distributions typical of turbidite TE-1 and TE-2 facies. The slates have high SiO2 indicating they are hemipelagites. The high Ba and V indicate they were deposited in an anoxic environment associated with high oceanic productivity. All these features are common in muddy turbidites. U–Th–Pb dating of detrital monazite and authigenic xenotime in the slates supports previous evidence that the dominant cleavage, in this unit, formed during the Benambran Orogeny. The whole-rock composition of the slates is similar to black slates in the Adaminaby Group, NSW. A review of Paleozoic whole-rock compositions from the Lachlan Orogen confirms they all have trace element contents similar to average Australian shale. However, there are subtle differences in composition. The Turquoise Bluff Slate and other Mathinna Supergroup rocks from the Eastern Tasmania Terrane have higher average Cr content than similar age turbidites from Victoria and NSW. This probably reflects a small contribution from Tasmania Cambrian ultramafic rocks in the provenance. If this were correct, northeastern Tasmania was closer to western Tasmania in the Paleozoic than other provinces of the Lachlan Orogen, southeastern Australia. Other subtle features of the whole-rock composition of Paleozoic sedimentary rocks from the Lachlan Orogen indicate it may be possible to recognise provincial variations in composition that will provide new constraints on tectonic models of southeastern Australia.  相似文献   
23.
The Montecristo monzogranite (MM) is a near-circular peraluminous monzogranite pluton occupying the entire 10 km2 of Montecristo Island. Outcrops of country rock are scarce, and are mainly roof pendants of metagabbros and calcsilicate hornfels of the Apenninic ophiolite sequence. Emplacement of the pluton (Rb–Sr age=7·1±0·2 Ma), following the early Miocene onset of continental collision, occurred during an extensional phase which migrated eastward via a combined process of subduction–delamination. The MM rocks are strongly porphyritic, the assemblage being composed of alkali-feldspar, quartz, plagioclase (all occurring as mega- or phenocrysts), biotite and minor cordierite. Accessory minerals include tourmaline, apatite, zircon, ilmenite, allanite, monazite, rutile and hellandite. Reconstructed crystallization histories for the mineral phases reveal a polybaric crystallization starting at about 5 kb. Textural variations of MM occur in sharp contact with each other; darker types often form globular masses containing fewer megacrysts and more abundant mafic microgranular enclaves. Geochemical, isotopic and petrographic data indicate that the MM magma was produced by anatectic melting of an intermediate to deep pelitic crustal source. On the basis of the geochemical and mineralogical characteristics of the enclaves, modification of their parent magma occurred by crystal fractionation coupled with mixing and mingling of components from the MM magma. The limited geochemical variation in MM is interpreted as due to crystal fractionation processes during the magma's ascent. Younger porphyritic dykes with more potassic and alkaline affinities cut the pluton; these dykes are concentrated in a major fracture zone and are associated with contemporaneous pseudotachylites. © 1997 John Wiley & Sons, Ltd.  相似文献   
24.
The type locality for high-temperature,low-pressure regional metamorphism,the Buchan Block in NE Scotland,exhibits profound differences to the rest of the Grampian Terrane.These differences have led some to regard the Buchan Block as an exotic crustal fragment comprising Precambrian basement gneisses and cover rocks thrust into their current position during Grampian orogenesis.Although rocks of the Buchan Block are now generally correlated with Dalradian strata elsewhere,the origin of the gneisses and the cause of the high heat flow and associated magmatism is debated.We report SIMS U-Pb and LA-ICPMS Hf isotopic data in zircon from high-grade rocks from the northeast(Inzie Head Gneiss)and northwest(Portsoy)corners of the Buchan Block.Around Inzie Head,upper amphibolite to granulite facies metasedimentary gneisses coexist with diorite sheets that were emplaced contemporaneously with partial melting of their host rocks,at least locally.U-Pb geochronology indicates a crystallisation age for the diorite of 486±9 Ma.Highly-deformed diorites within the Portsoy Gabbro have a crystallisation age of 493±8 Ma.Ages of ca.490 Ma for magmatism and high-grade metamorphism,which are broadly contemporaneous with ophiolite obduction and the onset of orogenesis,are significantly older than the established peak of Grampian metamorphism(ca.470 Ma).We propose a new model for the Grampian Orogeny involving punctuated tectonothermal activity due to tectonic switching during accretionary orogenesis.Rollback of a NW-dipping subduction zone at ca.490 Ma produced a back-arc environment(the Buchan Block)with associated arc magmatism and high dT/dP metamorphism.Arrival of an outboard arc resulted in shortening(the initial phase of the Grampian Orogeny)at ca.488 Ma.Rollback of a NW-dipping subduction zone to the SE of the ca.488 Ma suture began at 473 Ma and led to lithospheric-scale extension,decompression melting and advective heating of the middle crust,producing the widespread ca.470 Ma Grampian(classic Barrovian and Buchan)regional metamorphism.Resumed hinge advance and the final phase of shortening cut off the heat supply at ca.465 Ma,marking the end of the Grampian Orogeny.  相似文献   
25.
天山-准噶尔地区地震层析成像与壳幔结构   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对东西天山两条天然地震剖面的远震P波与近震P波走时资料以及2001-2007年新疆地方台网的近震走时资料分析,获得了天山-准噶尔地区的三维地震层析图像.层析反演使用的台站数140个,地震事件1132个,P波走时数24904条.检测板试验结果指出,东西天山剖面、天山轴部和东准噶尔地区P波速度扰动恢复能力相对高.纵波波...  相似文献   
26.
文章通过对南岭东段寨背和陂头岩基地质-岩石地球化学特征研究,判明它们的侵位深度(7.5 km)、围岩温度(250℃)及岩浆初始温度(950℃),建立起寨背-陂头岩基的数学计算模型,并计算得出:寨背和陂头花岗岩熔体侵位后,其初始温度降低至结晶温度所需的时间(Δtcol)分别为4.04 Ma(寨背岩基)和3.97 Ma(陂...  相似文献   
27.
The mountains of western and northwestern Burma consist chiefly of colossal accumulations of Palaeocene to Eocene (Arakan and Chin Hills) or Senonian to Eocene (Naga Hills) Flysch of varying, including “exotic”, facies.

The main frontal thrust zone of the Alpino‐Himalayan Tectogene lies along and within the easternmost ranges of this Indoburman system, not along the western margin (Shan Scarp) of the Sinoburman Highlands. Some of the highest mountains in the Naga Hills are “Klippen” of metamorphics lying on Flysch.

The Flysch ranges arose during the Oligocene but along the Arakan Coast there is ample evidence of an equally important earlier orogenic phase (latest Cretaceous) now almost totally buried beneath the western half of the Indoburman system and the post‐Oligocene “Argille Scagliose” and “Macigno” on‐lapping eastwards from the Bengal‐Assam embayment.

The lowlands of Central and Lower Burma do not represent a foreland feature, but an intramontane Molasse‐filled basin to which the sea retained access because of a general southerly plunge of the Alpine Tectogene. Geotec‐tonically, it is analogous to the Tibetan Plateau, not the Indo‐Gangetic lowlands.  相似文献   
28.
The metamorphic complexes of Tasmania formed during the Cambrian (ca 510 Ma) as a result of rapid compression in a subduction zone setting followed by rapid exhumation, which brought various fault-bounded metamorphic complexes back to the surface in less than 5 Ma. The two highest grade complexes, the Franklin Metamorphic Complex, and the Port Davey Metamorphic Complex, experienced initial growth of metamorphic garnets at ~560°C, ~0.56 GPa. However, their subsequent metamorphic histories diverge, with the FMC displaying a marked increase in pressure (to 1.4 GPa at peak P/T), while the PDMC shows only a slight increase in pressure (to ~0.7 GPa). Both complexes show only a minor increase in temperature (~100°C) between initial garnet growth and peak metamorphic conditions. Rapid exhumation of these complexes can be accounted for by a slab-breakoff model. However, the difference in peak pressure between these complexes requires either continued subduction of the FMC while the PDMC had already begun its return towards the surface or that the subduction zone geometry resulted in significantly different pressures occurring contemporaneously within portions of the channel, which are not far removed from one another.  相似文献   
29.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   
30.
TECTONIC EVOLUTION OF THE YANGTZE PASSIVE MARGIN AND SONGPAN GARZ? FOLD BELT, CHINA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号