首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  国内免费   1篇
地球物理   5篇
地质学   22篇
海洋学   12篇
  2017年   1篇
  2015年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   8篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   4篇
  1992年   1篇
排序方式: 共有39条查询结果,搜索用时 421 毫秒
21.
Particle tracking experiments were conducted for the Sea of Okhotsk using a three-dimensional ocean circulation model, as a step toward the simulation of oil spills. The model’s reproducibility is first examined in detail. Comparison with surface drifter and moored ADCP data shows that the model successfully reproduces the velocity field over the shelves, particularly in the weak stratification period. This is because the current variability is simply determined by integration of the alongshore component of the wind stress over the coast from which arrested topographic waves propagate. Good agreement even in the ice-covered period implies that the neglect of sea ice in the model is not a problem for reproduction of the current over the shelves. Good agreement also supports the correction of ECMWF wind speed by a factor of 1.25. A series of particle tracking experiments was carried out to examine the case of particles released from the Sakhalin oil field at depths of 0 m and 15 m. Regardless of the deployment month and year, most particles at depth 15 m are transported southward along the Sakhalin coast, in accordance with the abrupt intensification of the East Sakhalin Current in October, finally arriving offshore of Hokkaido in November–January. Particles at the surface, which are affected by wind drift in addition to the ocean current, show larger yearly variability. In years when the offshoreward-wind dominates, the particles would be advected out of the mainstream of the current and would not be transported offshore of Hokkaido.  相似文献   
22.
Abstract A deep section of accretionary complex, the metamorphosed Susunai Complex, is observed on Sakhalin Is., Russia. High pressure part of pumpellyite-actinolite facies metavolcanics, metacherts and metapelites are well exposed and constitute a tectonic pile preserving primary structures related to underplating of the oceanic crust. Three stages of deformation, D1 through D3, suggest successive deformation during subduction, underplating and exhumation of the complex. Oceanic material in the complex is more abundant than other well documented ancient accretionary complexes (e.g. the Shimanto Belt in southwest Japan and the Ghost Rocks Formation in Alaska), which were shallowly underplated. At Susunai, deep down-stepping of a décollément has scraped off the upper part of the oceanic crust, primarily the pillowed basalt horizon. This down-stepping results from crustal weakening as overpressured water is released from the fractured oceanic crust during metamorphism.  相似文献   
23.
Sakhalin Island straddles an active plate boundary between the Okhotsk and Eurasian plates. South of Sakhalin, this plate boundary is illuminated by a series of Mw 7–8 earthquakes along the eastern margin of the Sea of Japan. Although this plate boundary is considered to extend onshore along the length of Sakhalin, the location and convergence rate of the plate boundary had been poorly constrained. We mapped north-trending active faults along the western margin of the Poronaysk Lowland in central Sakhalin based on aerial photograph interpretation and field observations. The active faults are located east of and parallel to the Tym–Poronaysk fault, a terrane boundary between Upper Cretaceous and Neogene strata; the active faults appear to have reactivated the terrane boundary at depth in Quaternary time. The total length of the active fault zone on land is about 140 km. Tectonic geomorphic features such as east-facing monoclinal and fault scarps, back-tilted fluvial terraces, and numerous secondary faults suggest that the faults are west-dipping reverse faults. Assuming the most widely developed geomorphic surface in the study area formed during the last glacial maximum at about 20 ka based on similarities of geomorphic features with those in Hokkaido Island, we obtain a vertical component of slip rate of 0.9–1.4 mm/year. Using the fault dip of 30–60°W observed at an outcrop and trench walls, a net slip rate of 1.0–2.8 mm/year is obtained. The upper bound of the estimate is close to a convergence rate across the Tym–Poronaysk fault based on GPS measurements. A trenching study across the fault zone dated the most recent faulting event at 3500–4000 years ago. The net slip associated with this event is estimated at about 4.5 m. Since the last faulting event, a minimum of 3.5 m of strain, close to the strain released during the last event, has accumulated along the central portion of the active strand of the Tym–Poronaysk fault.  相似文献   
24.
基于对俄罗斯远东鄂霍茨克海域内的北萨哈林盆地石油地质条件的分析和已发现油气田的解剖,总结了盆地油气分布特征,结合构造演化分析,对影响油气成藏及分布的主控因素进行了探讨。研究表明:北萨哈林盆地油气分布具有陆上储量规模小、海域陆架规模大的特点,在纵向上可以划分为两大成藏组合,但油气主要富集于达吉组和努托夫组。这两个主要含油气层已发现油气藏在平面分布上具有明显的分带性,靠陆内带以达吉组油气藏分布为主,远陆外带以努托夫组油气藏分布为主。油气富集受多旋回构造演化、富油气凹陷及构造活动差异性等控制,海域陆架裂后坳陷内的低幅度隆起构造区为高丰度大中型油气田聚集的主要有利区。  相似文献   
25.
Organic-walled phytoplankton assemblages from Eocene and Oligocene reference sections of western Kamchatka are analyzed. They are close in taxonomic composition to coeval assemblages of northern Japan and Sakhalin that is a good opportunity to correlate regional units and verify their age. The euryhaline species Trinovantedinium boreale that is associated with Paralecaniella indentata and Micrhystridium preferring shallow low-salinity waters, on the one hand, and taxa dwelling in normal-salinity open sea environments, on the other, are dominant in most assemblages, which are examined. The suggested variant of bed succession with dinocyst assemblages may be valid for Japan, Sakhalin, Kamchatka, and the Bering Sea.  相似文献   
26.
The August 17 (18), 2006, Gornozavodsk earthquake (Mw = 5.6) in the southwestern part of Sakhalin was preceded by a number of anomalous seismological and geophysical phenomena. The extensive data recorded by a network of digital seismic stations make it possible to track the aftershock dynamics of the process within 24 hours after the main event. The paper describes various manifestations of the earthquake.  相似文献   
27.
The marine sedimentary formations of the Middle Albian to Maastrichtian in the Cretaceous Sakhalin Basin (CSB) were investigated. These successions of strata consist of interbedded sandy, clayey and calcareous rocks which are underlain by heterogeneous metamorphosed (up to greenschist facies) Paleozoic to Mesozoic (pre-Aptian) rocks. The studied sections display several different facies reflecting geological settings ranging from an inner shelf to a continental slope. Three depositional complexes bound by regional subaerial unconformities are recognized within the marine successions. Since the Albian, the CSB has been a rapidly subsiding marginal part of the Okhotsk Sea plate. The Naiba Valley succession, corresponding to a sublittoral zone, shows extremely high sedimentation rates up to 190 m/Ma. The stratigraphic distribution of lithofacies indicates that the CSB became shallower from the Middle Albian to the Maastrichtian.  相似文献   
28.
This paper reports detailed evidence on the dynamics of the gryphon activity of the Yuzhno-Sakhalinsk gas-water lithoclastic (mud) volcano. It was obtained by visual observations during periods between the short-term eruptions of 1959, 1979, and 2001 and, especially, during continuous monitoring between June 18 and September 3, 2005. In addition to the direct observations, the monitoring included measurements (three times per day) of the air temperature and pressure, the temperature of the liquid lithoclastic mass filling the crater hollows of several gryphons of various types, and the amounts of gases released by the two largest and most active gryphons. Liquid lithoclastic mass was collected daily in the crater of the largest (main or central) gryphon for the subsequent ICP AES analysis for five elements (Al, Fe, Ca, Mn, and Ba). The results of the monitoring were compared with the measurements of natural seismicity using the system of Dat and Datamark digital seismic stations. The acquired information was used to unequivocally demonstrate the existence of a direct causal relation between the activity of the Yuzhno-Sakhalinsk mud volcano, the dynamics of the chemical composition of the liquid lithoclastic mass ejected from its main gryphon, and the regional and local natural seismicity, which was previously conjectured. The dynamics of one of the measured elements (Al) is potentially useful for the prediction of eruptions.  相似文献   
29.
In the southwestern Okhotsk Sea off Hokkaido we observed chemical components related to the carbonate system for 1 year from August 1997 to June 1998. Using the conservative components salinity and water temperature, we confirmed the existence of two water masses flowing into the intermediate layer of the Okhotsk Sea, the East Sakhalin Current Water (ESCW) which becomes denser by mixing of brine water, and the Forerunner of Soya Warm Current Water (FSWW) which becomes denser due to cooling of the saline Kuroshio water. The ΔNTCx values were calculated by comparing the ESCW and the FSWW with the Pacific Deep Water (PDW). The ΔNTCx values obtained are 100–110 μmol/kg and 70–100 μmol/kg for the ESCW and the FSWW off Hokkaido, respectively, which are considerably larger than that of the Kuroshio water. These large ΔNTCx values may be due to both low DIC concentration in the surface water and intense gas exchange under the cold and stormy winter conditions for the ESCW and the cooling of the FSWW as it flows northward. Since the flow rates of dense waters concerned with the ESCW and the FSWW have previously been estimated as 0.9 Sv and 0.2 Sv, respectively, the amount of atmospheric CO2 absorbed and transported to the intermediate layer turns out to be 3.9−4.1 × 1013 gC/yr. This flux is small on a global scale, but the flux divided by the surface layer of the Okhotsk Sea is 30 gC/m2/yr, which is 5 times greater than the mean absorption flux of anthropogenic CO2 in the world's oceans. It is thus considered that atmospheric CO2 is efficiently absorbed in the Okhotsk Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
30.
A new grid data set for the southwestern part of the Okhotsk Sea was compiled by using all the available hydrographic data from the Japan Oceanographic Data Center, World Ocean Atlas 1994 and the other additional data sources with the resolution of about 10 km. We examine the seasonal variations of areas and volumes of Soya Warm Current Water (SWCW) and East Sakhalin Current Water (ESCW) and show that the exchanges of these water masses drastically occur in April and November. The peculiar variation of sea level in this region is also related with the water mass exchange. Sea level at the Hokkaido coast of the Okhotsk Sea reaches its minimum in April about two months later than in the case of ordinary mid-latitude ocean, and its maximum in December besides the summer peak. The winter peak of sea level in December is caused by the advent of fresh and cold ESCW which is accumulated at the subsurface layers (20–150 m) through the Ekman convergence by the prevailing northerly wind. Sea level minimum in April is caused by the release of the convergence and the recovery of dense SWCW that is saline and much colder than that in summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号