首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   81篇
  国内免费   414篇
地球物理   29篇
地质学   1057篇
海洋学   23篇
天文学   2篇
综合类   11篇
自然地理   7篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   19篇
  2020年   30篇
  2019年   40篇
  2018年   31篇
  2017年   59篇
  2016年   49篇
  2015年   53篇
  2014年   68篇
  2013年   48篇
  2012年   60篇
  2011年   40篇
  2010年   30篇
  2009年   50篇
  2008年   41篇
  2007年   66篇
  2006年   65篇
  2005年   46篇
  2004年   48篇
  2003年   36篇
  2002年   30篇
  2001年   34篇
  2000年   31篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   12篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   6篇
  1991年   14篇
  1990年   1篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1129条查询结果,搜索用时 15 毫秒
981.
架底金矿是近年来在黔西南新发现的主要赋存于玄武岩中的大型微细粒浸染型金矿床。为查明其成矿流体特征,探讨流体成矿机制,针对矿床不同成矿阶段采取流体包裹体样品开展工作。根据野外观察和室内分析,架底金矿热液成矿期可分为3个阶段:黄铁矿阶段、烟灰色石英阶段和硫化物阶段,其中烟灰色石英阶段为主要成矿阶段。流体包裹体以NaCl-H2O和CO2-NaCl-H2O型为主,黄铁矿阶段富CO2包裹体,均一温度(Th)为211~231℃,盐度(wt)为2.10~7.60(% NaCl equiv);烟灰色石英阶段见大量NaCl-H2O和CO2-NaCl-H2O型包裹体,均一温度(Th)为182~218℃,盐度(wt)为1.40~5.90(% NaCl equiv);硫化物阶段包裹体均一温度(Th)普遍小于183℃,盐度(wt)为0.90~5.30(% NaCl equiv)。激光拉曼光谱分析显示包裹体中含CO2、CH4、N2、SO2等气相组分,随着成矿流体均一温度、盐度和密度的不断下降,包裹体中气相组分种类也趋于简单。通过计算成矿流体的ρ、P、pH、Eh和fO2等物理化学参数,表明成矿环境具有中低温、低盐度、低密度、近中性、相对还原及低氧逸度的特征。流体包裹体组合变化表明成矿作用发生在流体CO2含量不断降低的过程,主成矿阶段流体混合和区域伸展构造引起流体沸腾作用强烈,大量金属成分(黄铁矿、自然金等)快速沉淀形成金矿体。   相似文献   
982.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   
983.
近年来,随着油气勘探不断向深层—超深层领域拓展,深层展现出了巨大的油气勘探潜力,同时也在成烃-成储-成藏等方面浮现出一系列科学问题。本文在广泛调研国内外相关研究的基础上,梳理了深层油气成藏环境和生、储、盖成藏要素的特殊性,重点讨论了深层油气藏在形成与演化过程中需要深入关注的四个基本问题:(1)深层中的油气生成、储集空间形成、油气相态和运移等研究,均需要以物质守恒和能量守恒基本定律为前提开展;(2)深层经历了盆地演化全过程,需要从动态演化角度研究油气成藏;(3)需要探索新的实验方法,加大对深层液态烃稳定性与保存深度下限的研究;(4)注重多学科融合与多技术交叉,解决深层复杂的地质问题。在此基础上,提出了深层油气藏最为可能的两种成藏模式:(1)中—浅层油成藏、深埋保持型;(2)长期浅埋、晚期快速深埋(凝析)气成藏型。以塔里木盆地台盆区顺北地区和库车坳陷博孜—大北地区为研究对象,应用储层地球化学分析、流体包裹体系列分析技术、方解石原位U-Pb定年技术和盆地模拟技术,对两个地区油气成藏模式进行研究。结果表明:顺北地区奥陶系深层油气藏为“早期中—浅层成藏、后期持续深埋保存”的成藏模式,油气成藏后相...  相似文献   
984.
Garnet brought to the surface by late Miocene granitoids at La Galite Archipelago (Central Mediterranean, Tunisia) contains abundant primary melt and fluid inclusions. Microstructural observations and mineral chemistry define the host garnet as a peritectic phase produced by biotite incongruent melting at ~800 °C and 0.5 GPa, under fluid‐present conditions. The trapped melt is leucogranitic with an unexpected metaluminous and almost peralkaline character. Fluid inclusions are one phase at room temperature, and contain a CO2‐dominated fluid, with minor H2O, N2 and CH4. Siderite and an OH‐bearing phase were identified by Raman and IR spectroscopy within every analysed inclusion, and are interpreted as products of a post‐entrapment carbonation/hydration reaction between the fluid and the host during cooling. The fluid present during anatexis is therefore inferred to have been originally richer in both H2O and CO2. The production of anatectic melt with a metaluminous signature can be explained as the result of partial melting of relatively Al‐poor protoliths assisted by CO2‐rich fluids.  相似文献   
985.
The Egyptian black sands contain several economic minerals, such as ilmenite, magnetite, garnet, zircon, rutile and monazite. During the concentration and separation of a high-grade rutile concentrate a bulk magnetic fraction is obtained. This fraction is composed mainly of opaques, titanhematite, ilmenite–titanhematite exsolved intergrown grains, magnetic leucoxene in addition to chromite, and magnetic rutile. The magnetic rutile occupies 6 wt.% of the bulk magnetic fraction or approx. 4 wt.% of the original rutile content in the raw sands. Most of magnetic rutile crystals are contaminated with opaque inclusions, staining-coating and/or composite locked grains. This magnetic rutile has a magnetic range from strongly paramagnetic to very weak paramagnetic. Electron microprobe analysis for twenty-three magnetic rutile grains identified mineral components of rutile, titanhematite, pseudorutile, leached pseudorutile and ilmenite in decreasing order of abundance. Some other inclusions are also detected in the different magnetic rutile grains. They are most probably garnet, silica, amphibole, ilmenite, feldspar, mica and zircon. The presence of these inclusions reflect the derivation of magnetic rutile of various crystalline igneous and metamorphic rocks. The magnetic susceptibility of magnetic rutile depends on the associated mineral components and their relative volumes in comparison to the rutile mineral component. Magnetic susceptibility of magnetic rutile is also related to both type and size of the associated mineral inclusions. The average chemical composition of the magnetic rutile is 66.34 wt.% TiO2, 21.71 wt.% Fe2O3, 6.39 wt.% SiO2, 1.80 wt.% Al2O3, 1.19 wt.% CaO and 0.10 wt.% Cr2O3. Thus, the contamination of magnetic rutile in the non-magnetic rutile concentrate would decrease the market value of the rutile concentrate. Alternatively these magnetic rutile grains are recommended to be blended with magnetic leucoxene or some types of ilmenite concentrate to improve the overall marketable specifications especially for both of Ti, Fe and Cr contents.  相似文献   
986.
The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se-condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera-logy, microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature(151.7℃--205.8℃), low salinity(2.06 wt%--4.94 wt%NaCl), low density(0.86--0.92 g/cm~3) and shallow formation(1.5--3.0 km) is a hydrothermal solution of NaCl-H_2O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low-temperature hydrothermal vein deposit.  相似文献   
987.
Early marine diagenetic dolomite is a rather thermodynamically-stable carbonate phase and has potential to act as an archive of marine porewater properties. However, the variety of early to late diagenetic dolomite phases that can coexist within a single sample can result in extensive complexity. Here, the archive potential of early marine dolomites exposed to extreme post-depositional processes is tested using various types of analyses, including: petrography, fluid inclusion data, stable δ13C and δ18O isotopes, 87Sr/86Sr ratios, and U-Pb age dating of various dolomite phases. In this example, a Triassic carbonate platform was dissected and overprinted (diagenetic temperatures of 50 to 430°C) in a strike-slip zone in Southern Spain. Eight episodes of dolomitization, a dolostone cataclasite and late stage meteoric/vadose cementation were recognized. The following processes were found to be diagenetically relevant: (i) protolith deposition and fabric-preservation, and marine dolomitization of precursor aragonite and calcite during the Middle–Late Triassic; (ii) intermediate burial and formation of zebra saddle dolomite and precipitation of various dolomite cements in a Proto-Atlantic opening stress regime (T ca 250°C) during the Early–Middle Jurassic; (iii) dolomite cement precipitation during early Alpine tectonism, rapid burial to ca 15 km, and high-grade anchizone overprint during Alpine tectonic evolution in the Early Eocene to Early Miocene; (iv) brecciation of dolostones to cataclasite during the onset of the Carboneras Fault Zone activity during the Middle Miocene; and (v) late-stage regression and subsequent meteoric overprint. Data shown here document that, under favourable conditions, early diagenetic marine dolomites and their archive data may resist petrographic and geochemical resetting over time intervals of 108 or more years. Evidence for this preservation includes preserved Late Triassic seawater δ13CDIC values and primary fluid inclusion data. Data also indicate that oversimplified statements based on bulk data from other petrographically-complex dolomite archives must be considered with caution.  相似文献   
988.
韩发  田树刚  刘建 《矿床地质》2020,39(3):461-476
在大厂长坡-铜坑矿床,锡石中普遍存在具有代表性的2类包裹体:黑色包裹体和气-液两相的流体包裹体。文章通过对包裹体结构形态和理论分析,证明黑色包裹体是原生流体包裹体在内压超高(overpressured)条件下形成的。通过牙形石色温指数(CAI)及表面残余结构的研究,获得了容矿岩石的古地温为300~650℃,与前人通过气-液两相包裹体获得的矿化温度(240~540℃)高度吻合,说明容矿围岩的受热事件与同期矿化事件,其热源具有同源性,可能来自矿床下伏的燕山期花岗岩。层状主矿体锡石中原生的流体包裹体正是在这期事件的影响下,变成了黑色包裹体。这些研究证明,大厂锡矿至少有早、晚2期成矿作用。黑色包裹体的发现和古地温的恢复,为层状主矿体是在海底热液喷流沉积成因的认识提供了关键证据。  相似文献   
989.
Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschmühle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Staré, České Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.  相似文献   
990.
ABSTRACT

Silicate melt inclusions (SMIs) are small droplets of magma that become trapped in minerals during crystal growth. SMIs in olivine crystals can provide critical information on the range of melt compositions and processes that occur during melt generation, evolution, transport, and eruption. The Pliocene–Quaternary volcanic rocks in the Qorveh–Bijar volcanic belt of western Iran show porphyritic and microlithic textures, with olivine and clinopyroxene being the dominant minerals. Magnesian olivines in these volcanic rocks contain primary SMIs. The composition and characteristic of olivine-hosted SMI of these rocks are investigated to constrain the source lithology for mafic volcanism. Bulk compositions of the SMIs overlap those of their host rocks and extend to higher CaO/Al2O3 values. The estimated entrapment pressures and temperatures of the studied SMIs are 9.1–10.3 kbar and 1220–1355°C. The calculated mafic parental melt contains 42.36 wt.% SiO2, low total alkalis (3.22 wt.%), and high MgO (16.1 wt.%). Exploratory calculations using pMELTS show that this parental composition underwent variable degrees of fractional crystallization, as reflected by the variable compositions of the SMIs. Several lines of evidence including pyroxene xenocrysts and high FeO/MnO, FC3MS (FeO/CaO – 3*MgO/SiO2), and Zn/Fe ratios (14–21), suggest that a metasomatized pyroxenitic source contributed to the genesis of the parental melt. Amphibole in the SMIs indicates a high volatile content in the parental melt, which we conclude was generated from a metasomatized lithospheric mantle source. The pyroxenite source also contained garnet. Our geochemical results lead us to propose a new petrogenetic model. Specifically, we infer that a dense and unstable portion of the lithosphere underwent localized laminar detachment and downward flow, i.e. lithospheric drip. This drip underwent volatile-enhanced partial melting during descent through the underlying hot asthenosphere and generated the studied volcanic rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号