首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   81篇
  国内免费   414篇
地球物理   29篇
地质学   1057篇
海洋学   23篇
天文学   2篇
综合类   11篇
自然地理   7篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   19篇
  2020年   30篇
  2019年   40篇
  2018年   31篇
  2017年   59篇
  2016年   49篇
  2015年   53篇
  2014年   68篇
  2013年   48篇
  2012年   60篇
  2011年   40篇
  2010年   30篇
  2009年   50篇
  2008年   41篇
  2007年   66篇
  2006年   65篇
  2005年   46篇
  2004年   48篇
  2003年   36篇
  2002年   30篇
  2001年   34篇
  2000年   31篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   12篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   6篇
  1991年   14篇
  1990年   1篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1129条查询结果,搜索用时 15 毫秒
41.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   
42.
Chemical analyses suggest that the metavolcanic rocks of the Almas Greenstone Belt (AGB), Tocantins State, Brazil have a continental affinity, possibly related to a continental rift environment. They were metamorphosed to amphibolite facies during a regional tectono-metamorphic event (Dn), retrogressed to greenschist facies assemblages and then hydrothermally altered within dextral strike–slip shear zones (Dn+1). Fracture sets related to Dn+2 intersect Sn+1.The Paiol Gold Mine is one of several mineralised zones within metabasic and meta-intermediate rocks of the AGB. It exploits shoots of sulphide–Au–quartz mineralisation that occupy dilational zones approximately perpendicular to an elongation lineation (Ln+1) within mylonitic foliation Sn+1 (Sn+1=S within the S–C fabric). The dilational zones probably formed due to dextral displacement on sinistrally en echelon C surfaces. Minor amounts of gold may have been introduced or remobilised during Dn+2.Coexisting primary and pseudosecondary fluid inclusions in mineralised quartz veins from ore shoots comprise a high-salinity three-phase type (Type II) and a lower salinity two-phase type (Type I). Homogenisation temperatures for Type II inclusions range from 200 to 410 °C and Type I from 90 to 320 °C. The inclusions and their temperature ranges are believed to reflect heat exchange and some mixing between the two fluid types under relatively constant ambient temperatures, but variable (though broadly declining) fluid temperatures. This took place late in Dn+1 in conjunction with greenschist facies retrogression and localised hydrothermally induced metasomatism.  相似文献   
43.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   
44.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   

45.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   

46.
The Kuoerzhenkuola gold field (including the Kuo- erzhenkuola and the Buerkesidai gold deposits), lo- cated 68 km east of Jimunai County in northern Xing- jiang, China, is an important component of the Sawuer gold belt which is the eastward extending part of the Zarma-Sawur gold-copper belt in Kazakhstan. Some studies are concerned with the geology of the gold ores[1―3], the associated volcanic rocks[4], radiogenic isotope[5―8], and the ore-forming environment[8]. Most researchers inferr…  相似文献   
47.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   
48.
Abstract. Scanning electron microscopy-cathodoluminescence (SEM-CL) imaging of vein quartz in the Cu-mineralised, Shuteen Complex (South Gobi, Mongolia) has revealed a complex history of crystal growth, dissolution and microfracture healing, associated with several hydrothermal events that could not be detected using other observational techniques (e.g. transmitted/reflected light microscopy, back-scattered electron imaging, or secondary electron imaging).
The quartz initially grew as CL-bright/grey crystals in a 345±30C liquid reservoir, as inferred by the analysis of primary liquid fluid inclusions (average Th of 343C; 6.6∼7.7 wt% NaCleq). Quartz precipitation occurred at the edge of the crystals as reservoir fluids cooled to 260±25C, as indicated by micron-scale CL-dark/CL-bright quartz growth bands containing abundant fluid inclusions (with an average Th values of 261C). Pressure fluctuations were the likely cause of dissolution, as SEM-CL imaging reveals the quartz have corroded or rounded crystal edges, and precipitation of later quartz into open space. SEM-CL imaging shows the quartz contains healed microfractures that trapped low salinity fluids (3.9 wt% NaC1eq) with Th values of 173±15C.
SEM-CL imaging provides a means of deciphering the thermal and chemical evolution of the fossil Shuteen hydrothermal system, and the nature of hydrothermal quartz vein-forming processes, by facilitating the correlation of distinct fluid inclusion populations and their relative chronology, with specific hydrothermal events.  相似文献   
49.
Robert L. Linnen   《Lithos》2005,80(1-4):267-280
The solubilities of columbite, tantalite, wolframite, rutile, zircon and hafnon were determined as a function of the water contents in peralkaline and subaluminous granite melts. All experiments were conducted at 1035 °C and 2 kbar and the water contents of the melts ranged from nominally dry to approximately 6 wt.% H2O. Accessory phase solubilities are not affected by the water content of the peralkaline melt. By contrast, solubilities are affected by the water content of the subaluminous melt, where the solubilities of all the accessory phases examined increase with the water content of the melt, up to 2 wt.% H2O. At higher water contents, solubilities are nearly constant. It can be concluded that water is not an important control of accessory phase solubility, although the water content will affect diffusivities of components in the melt, thus whether or not accessory phases will be present as restite material. The solubility behaviour in the subaluminous and peralkaline melts supports previous spectroscopic studies, which have observed differences in the coordination of high field strength elements in dry vs. wet subaluminous granitic glasses, but not for peralkaline granitic glasses. Lastly, the fact that wolframite solubility increases with increasing water content in the subaluminous melt suggests that tungsten dissolved as a hexavalent species.  相似文献   
50.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号