全文获取类型
收费全文 | 263篇 |
免费 | 20篇 |
国内免费 | 17篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 35篇 |
地球物理 | 129篇 |
地质学 | 60篇 |
海洋学 | 10篇 |
综合类 | 11篇 |
自然地理 | 48篇 |
出版年
2023年 | 5篇 |
2022年 | 9篇 |
2021年 | 3篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 7篇 |
2017年 | 8篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 8篇 |
2012年 | 9篇 |
2011年 | 16篇 |
2010年 | 7篇 |
2009年 | 19篇 |
2008年 | 18篇 |
2007年 | 14篇 |
2006年 | 14篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 10篇 |
2002年 | 6篇 |
2001年 | 12篇 |
2000年 | 7篇 |
1999年 | 8篇 |
1998年 | 5篇 |
1997年 | 9篇 |
1996年 | 3篇 |
1995年 | 6篇 |
1994年 | 5篇 |
1993年 | 11篇 |
1992年 | 4篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1977年 | 1篇 |
1976年 | 3篇 |
排序方式: 共有300条查询结果,搜索用时 10 毫秒
61.
Copula-based identification of the non-stationarity of the relation between runoff and sediment load
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment. 相似文献
62.
This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial sediments that underlie it and is located only on the flattest parts of the Finger uplands and in the bottoms of upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition. Deep, low-order tributary gullies (almost ubiquitous on Finger sideslopes) could only have formed by runoff, and soil data from them confirm that the end of gully formation (and hence, the end of runoff) was contemporaneous with the stabilization of the outwash surfaces in the lowlands. Therefore, runoff from the Finger uplands during the loess depositional event is the likely reason for the absence of loess at sites in the Fingers. Because of the sandy nature and high permeability of the Fingers' sediments, runoff on this scale could only have occurred under frozen ground conditions. Frozen ground and windy conditions in the Fingers at the time of the Port Huron advance is likely because the area would have been surrounded by ice on roughly three sides. This research (1) shows that outwash plains and meltwater streams of only medium size can be significant loess sources and (2) is the first to present evidence for frozen ground conditions in this part of the upper Midwest. 相似文献
63.
Increases in runoff and erosion after wildfires are often attributed to the development of hydrophobic soils. The potential for increased overland flow depends on the spatial contiguity of the hydrophobicity as well as its overall strength, but there is limited information on the spatial variability of soil hydrophobicity. We conducted spatially intensive hydrophobicity measurements in 225 m2 and 1 m2 plots in forested areas of Montana and Colorado burned at moderate to high severity, and in unburned control plots. Both the burned and unburned 225 m2 plots contained 10–23 hydrophobic soil patches in which hydrophobicity was strongest at the surface and declined rapidly with depth. The hydrophobic patches were closer together and up to 3 times larger in the burned plots. Consequently, 19% to 76% of the burned plots were hydrophobic compared to just 11% of the unburned plots. In five of the six burned plots, the patches were not laterally connected, suggesting that in most cases Hortonian overland flow generated from hydrophobic patches will infiltrate near its point of origin. The 1 m2 plots were smaller than most of the hydrophobic patches, so they did not capture the spatial characteristics of soil hydrophobicity. Characterization of the spatial variability of soil hydrophobicity should be based on measurements conducted at 1 m intervals across areas of > 100 m2. Due to the patchiness of soil hydrophobicity at the 100 to 101 meter scale, overland flow measurements in small ( 1 m2) plots may overestimate the magnitude and variability of runoff from burned catchments. 相似文献
64.
Microcatchment is a technique for collecting, storing and conserving local surface runoff in order to grow trees/shrubs. In this system, runoff water is generated on a plot and stored in the soil during runoff events, and trees/shrubs may utilize this water during the next dry season.Microcatchments have relatively small runoff generation areas (from dozens to hundreds sq. m) and are cheap and simple to implement Their collection area is usually a small depression located nearby the runoff generating area in which one or a few trees/shrubs may be planted Due to the short overland flow path runoff generation is efficient and even short low intensity storms may generate runoff. The drawback is however that due to the small size of the generating area small volumes of water are conveyed to the storage plots. Another drawback is susceptibility of the augmented water to evaporation. The main objective of present research presented hereafter was to estimate the effect the depth of the depression has on the efficiency of the water conservation in the soil profile. In the present study the storage plots were circular pits and the effect their depth had on evaporative losses and water distribution were studied.The results clearly show that the depth of the pit significantly affects evaporative water losses. The losses were separately computed for the soil cylinder whose upper surface is the bottom of the pit and for the surrounding shell. No differences between treatments were evident for losses from the inner cylinder. Significant differences in water losses were however observed for the surrounding shell where the shallow pits losing as much as six times more than the deeper pits. 相似文献
65.
《国际泥沙研究》1999,(2)
IINTRODUCTIONTheinterrillerosiononafieldplotisaffectedbythekineticenergyoftherainfall,wind,topographyfactors,propertiesofsoilandthecanopy.Theinterrillerosionoccursasthefirstdropimpactsthehillslopes.Theinterrillerosionoccursinallkindsofrainfallandtheamountofthesplasherosion,whichisthemainpartofinterrillerosion,canaccountforagreatpanofthetotalerosionamountinaheavystorm(Baner1990,Glymph1957,QianandWan1986,Zhou1981).Therefore,itisveryimportanttorevealthemechanismtoestimatetheamountofinterri… 相似文献
66.
The Hortonian model of runoff flow which had been thought to be applicable in arid areas has previously been shown not to be valid, notably in Israel, where inverse relations have been observed between slope angle, and runoff discharge and slope erosion. The paper discusses laboratory experiments on simulated slope conditions in a rather arid environment. It is shown by rain simulation on granite grus that infiltration capacity is a function of rainfall intensity, slope angle and runoff discharge. The infiltration capacity f can equal the rainfall intensity beyond a critical distance x(m) so that discharge becomes constant. Debris covers affect runoff hydraulics, especially on poorly cohesive soils, and both slow downslope and upslope movements which correspond to the process of so-called runoff creep can occur. Coarse debris and grass covers, as roughness factors, induce hydraulic discontinuities and activate local turbulent flow and slope erosion. Instead of being merely protective elements these factors tend to catalyze the slope wash, in comparison with naked surfaces, if the Reynolds number of the flow exceeds a certain critical value. 相似文献
67.
Karl-Heinz Schmidt 《地球表面变化过程与地形》1985,10(5):497-508
The variation of mechanical and chemical denudation is investigated using discharge and sediment yield data from the Upper Colorado River System. Annual precipitation ranges from approximately 150 mm to 1500 mm. Mean specific yield ranges from 0-2 1/s km2 ( = 6 mm p a) to 151/s km2 ( = 475 mm p a). The hydrological-geomorphological system adjusts itself to these varying climatic conditions; in some areas, however, the effects of lithology or land use seem to override the climatic controls. It is demonstrated that the increase in the absolute and particularly the relative amount of suspended sediment is closely related to a decrease in annual runoff and to an increase in the importance of high magnitude/low frequency events. This indicates that in areas of low annual runoff and high runoff variability, soluble rocks are more resistant than in more humid areas. During high magnitude/low frequency events, suspended sediment concentrations and loads are very high in semiarid areas due to sparse vegetation cover and dominance of direct runoff. Events of moderate magnitude and frequency, which in more humid areas transport most of the dissolved load, seldom occur. The trend towards increasing mechanical denudation is even observed in areas of very low runoff (0-221/s km2 = 7 mm p a). The peak of sediment yield in dry areas seems to approximate the point of no runoff very closely. Mechanical and chemical denudation are of equal importance at a runoff of about 300 mm per year. 相似文献
68.
Summary Fresnel volumes and interface Fresnel zones of transmitted and head waves are studied. The relation derived for transmitted waves may also be used for converted reflected waves. Considerable attention is devoted to the penetration of Fresnel volumes across structural interfaces, particularly for head waves. 相似文献
69.
The impact of three-dimensional subsurface heterogeneity in the saturated hydraulic conductivity on hillslope runoff generated by excess infiltration (so-called Hortonian runoff) is examined. A fully coupled, parallel subsurface–overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty in spatial structure. A large number of cases are simulated in a parametric manner with the variance of the hydraulic conductivity varied over orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical representations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show that three-dimensional stochastic representations of the subsurface hydraulic conductivity can create shallow perching, which has an important effect on runoff behavior that is different than previous two-dimensional analyses. The simple theories are shown to be very poor predictors of the fraction of saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales (∼30) and not achieved for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity. 相似文献
70.
Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers 总被引:5,自引:0,他引:5
The use of gravel and sand as mulch has been an indigenous farming technique for crop production for over 300 years in the semiarid loess region of northwest China. The objective of this study was to determine the influence of texture and thickness of gravel and sand mulch layers on soil water storage by field experiments. The texture experiment consists of three commonly used gravel mulch types: pebble, mixed pebble and sand, fine sand; and the thickness experiment consists of 1, 2 and 3-layers of 2 cm pebbles. Each treatment has three replications. The results indicate that gravel-sand mulches were more effective in conserving soil water, as compared with the bare soil treatment, and the mixed pebble and sand mulch was more effective to conserve soil water than the sole pebble or sand mulch. Soil water content increased with mulch thickness (the number of gravel layers), 1-layer treatment had an average soil water content of 10.85% at 0-60 cm soil layer after a rainfall of 10 mm, 2.42% and 4.92% less than the 2-layers and 3-layers treatments. From May to October in 2004, two and three layers of pebbles conserved 9.8 ± 6.6 mm and 20.0 ± 14.3 mm more water, respectively, as compared with the one layer of 2 cm pebbles at the soil depth of 0-100 cm. 相似文献