首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   22篇
  国内免费   17篇
测绘学   6篇
大气科学   34篇
地球物理   129篇
地质学   59篇
海洋学   10篇
综合类   11篇
自然地理   48篇
  2023年   5篇
  2022年   9篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   3篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   9篇
  2011年   16篇
  2010年   7篇
  2009年   18篇
  2008年   18篇
  2007年   14篇
  2006年   14篇
  2005年   9篇
  2004年   7篇
  2003年   10篇
  2002年   6篇
  2001年   12篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   11篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   3篇
排序方式: 共有297条查询结果,搜索用时 140 毫秒
261.
This is the second of two papers examining the surface hydrology of the Lake Eyre Basin (LEB) (1,140,000 km2) in Australia. The streams are unregulated and are characterised by extreme discharge variation. The analyses reported cover only surface hydrology and include comparisons with arid zone catchments globally. The paper discusses spatial runoff and annual streamflow characteristics, flow duration and baseflow index (BFI) analyses, annual flood frequency analysis and flood transmission losses, a water balance study, wet and dry run length analysis and, finally, yield from hypothetical reservoirs located across the LEB. There are 12 conclusions listed at the end of the paper. We identify two highlights as follows:
• The coefficient of variation of annual flows, Cv, varies from 0.98 to 2.62. Compared with 45 arid zone rivers world-wide excluding Australian rivers, the annual Cv of the LEB streams are approximately double the average variability found world-wide.
• Large transmission losses occur as flood flows move down the middle reaches of the major river systems. The transmission losses vary non-linearly with flood size as a result of differing transmission efficiencies between primary channels and the floodplain, and varying floodplain utilisation.
Keywords: Hydrology; Lake Eyre; Runoff; Surface hydrology; Yield  相似文献   
262.
Muddy floods, i.e. runoff from cultivated areas carrying large quantities of soil, are frequent and widespread in the European loess belt. They are mainly generated in dry zero-order valleys and are nowadays considered as the most likely process transferring material eroded from cultivated hillslopes during the Holocene to the flood plain. The huge costs of muddy flood damages justify the urgent installation of control measures. In the framework of the ‘Soil Erosion Decree’ of the Belgian Flemish region, a 12 ha-grassed waterway and three earthen dams have been installed between 2002–2004 in the thalweg of a 300-ha cultivated dry valley in the Belgian loess belt. The measures served their purpose by preventing any muddy flood in the downstream village, despite the occurrence of several extreme rainfall events (with a maximum return period of 150 years). The catchment has been intensively monitored from 2005–2007 and 39 runoff events were recorded in that period. Peak discharge (per ha) was reduced by 69% between the upstream and the downstream extremities of the grassed waterway (GWW). Furthermore, runoff was buffered for 5–12 h behind the dams, and the lag time at the outlet of the catchment was thereby increased by 75%. Reinfiltration was also observed within the waterway, runoff coefficients decreasing by a mean of 50% between both extremities of the GWW. Sediment discharge was also reduced by 93% between the GWW's inflow and the outlet. Before the installation of the control measures, specific sediment yield (SSY) of the catchment reached 3.5 t ha− 1 yr− 1 and an ephemeral gully was observed nearly each year in the catchment. Since the control measures have been installed, no (ephemeral) gully has developed and the SSY of the catchment dropped to a mean of 0.5 t ha− 1 yr− 1. Hence, sediment transfer from the cultivated dry valley to the alluvial plain should dramatically decrease. Total cost of the control measures that are built for a 20 year-period is very low (126 € ha− 1) compared to the mean damage cost associated with muddy floods in the study area (54 € ha− 1 yr− 1). Similar measures should therefore be installed to protect other flooded villages of the Belgian loess belt and comparable environments.  相似文献   
263.
The Sahel, a semiarid area set in a fragile context, has been undergoing dramatic climate and land-use changes since the middle of the 20th century. The effects of these changes on the water cycle are analyzed using a coupled eco-hydrological model at the scale of a small representative catchment. Three land cover situations, corresponding to the 1950, 1975, and 1992 states, are simulated with two contrasted rain seasons, to produce the respective and combined effects of these two factors on the catchment water balance. The latter is largely dominated by rain-season evapotranspiration, representing some 60–65% of annual rainfall for the wet year in the three land use situations, but over 85% for the dry year. In absolute terms, evapotranspiration appears more sensitive to land-use changes than to the climate, but with variations that remain below 10%. These evapotranspiration figures are corroborated by field observations. Relative runoff sensitivity is much higher, nearly in the same 1.5:1 ratio as the annual rainfall for the climate effect, and with an increase by a factor of about 2.6 for the land-use effect. Confronting long-term runoff and water table dynamics evidences a direct linkage between these two processes.  相似文献   
264.
A reliable and economical method for the estimation of nutrient export (e.g. phosphorus) in stream flow from catchments is necessary to quantify the impact of land use or land use change upon aquatic systems. The transport of phosphorus (P) from soil to water is known to impact negatively on water quality. A key observation from studies is that most P export occurs during high stream flow. However, it is not yet clear how flood-antecedent conditions affect the P export during flood events. In this study, the P loss from soil to water as represented by soluble reactive phosphorus (SRP) in stream waters from three different catchments, varying in land use, scale and location in Ireland was monitored over 1 year. This study examined the role of antecedent stream flow conditions on SRP export and identifies a catchment-specific relationship between SRP flood event load (EL) and a flow ratio (FR). The FR is defined as the ratio of the flood event volume (EV) to the pre-event volume (PEV). The latter is the cumulative flow volume for a number of days preceding the event. This PEV period was found to be longer (average 81 days) in the grassland catchments which were known to be saturated with soil P than in the forested catchments (average 21 days) with minimal soil P. This FR ratio is a measure of the antecedent hydrological state (wet or dry) of the catchment. For SRP for each catchment, a specific relationship between SRP EL and FR was identified. The annual SRP export was estimated, using this ratio and compared with the concentration/discharge (C/Q) method. The new flow ratio method was used with data from 12 flood events during the year to estimate an annual export of SRP. For the two grassland catchments in the study, using the FR method, we estimated an SRP export of 1.77 and 0.41 kg ha−1 yr−1. Using the C/Q method, for the same sites, our estimate of SRP export was 1.70 and 0.50 kg ha−1 yr−1 respectively. The C/Q method used SRP concentrations covering 40% of the year while the FR method used only 12 flood events covering less than 2% of the year. This new method which takes account of the antecedent flow state of the river is an alternative to and may be more promising than the traditional C/Q method, particularly when short duration or flood sampling of water quality is carried out.  相似文献   
265.
As a result of global warming, the discharges from rivers in permafrost regions have varied significantly. However, its mechanism remains unclear. One of possible factors is active soil freeze–thaw cycle, which may influence surface runoff in the variation of permafrost water cycle processes. In this study, a typical permafrost watershed in the Qinghai-Tibet plateau was selected, its hydrological processes were monitored from 2004 to 2007, and the effects of the freezing and thawing depth of the soil active layer on runoff processes were assessed. The runoff modulus, runoff coefficient, direct runoff ratio, recession gradient and their seasonal variations were estimated and analyzed. The active soil dynamics and water budget were analyzed to prove the features of the surface runoff and the influences of active soil freeze–thaw processes. The primary factors influencing surface runoff processes during different seasons were analyzed by Principal Component Analysis (PCA) and statistical regression methods. The results showed that the high runoff coefficient and low direct runoff ratio were the main characteristics during the spring flood period (May–June) and during the autumn recession period (September). The runoff modulus and its year-to-year variability were the greatest in the summer flood period. The direct runoff ratio decreased from 0.43 in May to 0.29 in September, with the exception of the highest ratio, which occurred during the summer recession period (July). The active soil thawing in the upper layer of depth of 60 cm had contributed to increase in discharge, but the increase in thawing depth deeper than 60 cm led to a decrease in surface runoff and slowness in the recession process. Precipitation played a small role in the spring flood runoff and the autumn runoff. The soil active layer freeze–thaw variation, which affected seasonal soil water dynamic and water budget and reformed seasonal runoff characteristics, along with vegetation cover changes, is considered the potential major factor in control of the hydrological processes in the permafrost region.  相似文献   
266.
Concentrations of ten metals were measured in waters and sediments at 14 sites during four sampling periods (1996–1997). These sites include various marine ecosystems that are highly influenced by industry, tourism and river discharges, nine of which are within the Morrocoy National Park. Spatially, metal concentrations in water were homogenous, whereas in sediments their distributions were related to grain size. Maximum concentrations of cadmium (Cd) and mean concentrations of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in water were above the guideline values proposed by NOAA, indicating the potential of these metals for producing chronic effects in marine biota. Sheltered sites showed the highest metal concentrations in sediments; with Cd and Zn above these guidelines. Enrichment factors and geo-accumulation indexes suggested that metals in sediments were largely of natural origin except for Pb, Cd and vanadium (V), which were apparently associated with industrial effluents. A disruption of the spatial distribution of metals after heavy rainfall, when exposed sites reached concentrations as high as those in sheltered sites, showed the influence of nearby rivers. The potential increase of such climatic events could represent additional stress for natural protected areas in the Caribbean.  相似文献   
267.
Generating estimates of the future impacts of climate change on human and natural systems is confounded by cascading uncertainties which propagate through the impact assessment. Here, a simple stochastic rainfall–runoff model representing 238 river basins on the Australian continent was used to assess the sensitivity of the risk of runoff changes to various sources of uncertainty. Uncertainties included global mean temperature change, greenhouse gas stabilisation targets, catchment sensitivities to climatic change, and the seasonality of runoff, rainfall, and evaporation. Model simulations provided estimates of the first-order risk of climate change to Australian catchments, with several regions having high likelihoods of experiencing significant reductions in future runoff. Climate uncertainty (at global and regional scales) was identified as the dominant driving force in hydrological risk assessments. Uncertainties in catchment sensitivities to climatic changes also influenced risk, provided they were sufficiently large, whereas structural assumptions of the model were generally negligible. Collectively, these results indicate that rigorous assessment of climate risk to water resources over relatively long time-scales is largely a function of adequately exploring the uncertainty space of future climate changes.  相似文献   
268.
Hydrometric measurements, electrical conductivity, water isotopic and hydrochemical components of stream water were used to study summer runoff generation in a flat fen. Different processes generated runoff at low- and high-flows. At storm-flows, fen runoff was generated from overland flow, originating from upland surface water. Temporary storage of water on the fen surface attenuated and delayed flow peaks. At low-flows, runoff at the fen outlet was generated from shallow subsurface flow in the Acrotelm. During low-flow periods, water originated mainly from peat storage water while during episodic events the wetland water storage was renewed by inflowing stream water. Assessment and modeling of hydrological effects of peatlands should be performed separately for low-flows and high-flows, based on the dominating runoff generating processes. Attenuation and retardation of storm-flows in fens by temporary surface storage will depend on the geometric properties of both storage sections and sections controlling outflow. A routing reservoir model adapted for flat fens can be used for simulation of attenuation and retardation in runoff events, and it is suggested that the model concept should be tested for a broader range of peatlands.  相似文献   
269.
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.  相似文献   
270.
Effects of the grain-for-green program on soil erosion in China   总被引:1,自引:0,他引:1  
Severe soil erosion is a serious environmental problem in China.In 1999 the Chinese government implemented the Grain-for-Green Program (herein referred to as the Program),a well rounded program of ecol...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号