首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   63篇
  国内免费   150篇
测绘学   3篇
大气科学   11篇
地球物理   47篇
地质学   420篇
海洋学   32篇
天文学   2篇
综合类   18篇
自然地理   14篇
  2024年   2篇
  2023年   11篇
  2022年   8篇
  2021年   19篇
  2020年   19篇
  2019年   23篇
  2018年   22篇
  2017年   14篇
  2016年   18篇
  2015年   22篇
  2014年   18篇
  2013年   29篇
  2012年   33篇
  2011年   22篇
  2010年   14篇
  2009年   30篇
  2008年   15篇
  2007年   24篇
  2006年   30篇
  2005年   18篇
  2004年   37篇
  2003年   25篇
  2002年   14篇
  2001年   23篇
  2000年   16篇
  1999年   10篇
  1998年   8篇
  1997年   9篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
排序方式: 共有547条查询结果,搜索用时 296 毫秒
111.
River ice break‐up is known to have important morphological, ecological and socio‐economic effects on cold‐regions river environments. One of the most persistent effects of the spring break‐up period is the occurrence of high‐water events. A return‐period assessment of maximum annual nominal water depths occurring during the spring break‐up and open‐water season at 28 Water Survey of Canada hydrometric sites over the 1913–2002 time period in the Mackenzie River basin is presented. For the return periods assessed, 13 (14) stations are dominated by peak events occurring during the spring break‐up (open‐water) season. One location is determined to have a mixed signal. A regime classification is proposed to separate ice‐ and open‐water dominated systems. As part of the regime classification procedure, specific characteristics of return‐period patterns including alignment, and difference between the 2 and 10‐year events are used to identify regime types. A dimensionless stage‐discharge plot allows for a contrast of the relative magnitudes of flows required to generate maximum nominal water‐depth events in the different regimes. At sites where discharge during the spring break‐up is approximately one‐quarter or greater than the magnitude of the peak annual discharge, nominal water depths can be expected to exceed those occurring during the peak annual discharge event. Several physical factors (location, basin area, stream order, gradient, river orientation, and climate) are considered to explain the differing regimes and discussed relative to the major sub‐regions of the MRB. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   
112.
The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70–1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu–Hf and monazite U–Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP–medium-T (MT) metamorphism (M1) developed within the staurolite–garnet stability field, with conditions ranging from 530550°C at 67 kbar (garnet cores) to 620650°C at 89 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP–high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P–T conditions ranged from 600 to 680°C and 4–6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730–770°C and 6–8 kbar, and at 750–790°C and 6 kbar, respectively. The pressure–temperature–deformation–time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56–1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.  相似文献   
113.
The Tasman Line, a much‐discussed concept in the geology and tectonics of eastern Australia, has a long and chequered history of interpretation. This extends to current debates regarding the age and position of the Tasman Line in Gondwana‐Rodinia reconstructions. We present constraints, from mapping, geochemistry and geophysics, on the interpretation of gravity and magnetic lineaments attributed to the Tasman Line in New South Wales, South Australia, Victoria and Tasmania. These pieces of evidence suggest a protracted and complex latest Neoproterozoic to Carboniferous geological history that produces a variety of geophysical responses, rather than a simple ‘Line’. We also find no evidence of Rodinian breakup age activity responsible for any of the anomalies. In light of these findings, our preference is that the Tasman Line concept be abandoned as misleading, especially with regard to models of Rodinia‐Gondwana breakup, which must have occurred elsewhere, possibly well to the east. Instead, the rocks preserved in the westernmost part of the Tasmanides are consistent with previously proposed ‘Southwest Pacific’‐style models for Neoproterozoic continental breakup, margin formation and reaccretion of continental fragments in the Early Palaeozoic.  相似文献   
114.
Dam break flows and resulting river bed erosion can have disastrous impacts on human safety,infrastructure,and environmental quality.However,there is a lack of research on the mobility of non-uniform sediment mixtures resulting from dam break flows and how these differ from uniform sized sediment.In this paper,laboratory flume experiments revealed that coarse and fine fractions in non-uniform sediment had a higher and a lower bed-load parameter,respectively,than uniform sediments of the same size.Thus,the finer fractions were more stable and the coarser fractions were more erodible in a nonuniform bed compared to a uniform-grained bed.These differences can be explained by the hiding and protrusion of these fractions,respectively.By investigating changes in mobility of the mixed-size fractions with reservoir water levels,the results revealed that at low water levels,when the coarser fractions were only just mobile,the bed-load parameter of the finer fractions was higher than the coarser fractions.The opposite was observed at a higher water level,when a significant proportion of the coarsest fractions was mobilized.The higher protrusion of these grains had an important effect on their mobility relative to the finer grains.The transported sediment on these mixed-sized beds was coarser than the initial bed sediment,and became coarser with an increase in reservoir water level.  相似文献   
115.
塔里木盆地碎屑锆石年龄分布对前寒武纪基底的指示   总被引:7,自引:0,他引:7  
应用碎屑锆石LA-ICP-MS U-Pb定年方法研究塔里木盆地前寒武纪基底与超大陆的关系, 对盆地内部不同地区井下11个碎屑岩样品进行锆石年代学分析。塔里木盆地南部与北部分别检测到早元古代、中元古代产生的物源, 结合周边造山带测年资料分析佐证了早中元古代塔里木南北块体演化有差异, 北部大量的中元古代早期年代数据可能预示塔北微块体存在与Columbia超大陆裂解时间相近的构造-热事件。南北塔里木在新元古代早期才发生碰撞拼合形成统一的基底与演化进程, 所有样品都检测到南华纪年龄数据证实塔里木板块及其周缘在此期发生大规模裂解事件, 南华纪大规模火成岩活动形成了盆地显生宙碎屑岩最主要的蚀源, 塔里木板块存在与Rodinia超大陆裂解时间相当的构造-热事件。碎屑锆石测年资料为研究塔里木板块与超大陆的关系提供了来自盆地内部的证据。  相似文献   
116.
综合20口井岩心和496口井测井、录井及分析化验资料,对松辽盆地他拉哈-齐家地区姚一段葡萄花油层进行高分辨率层序地层研究,提出葡萄花油层北、西部为同沉积构造抬升控制的底部缺失的层序地层新格架。研究区最有利相带砂体为窄而细的末梢河道砂、薄层河口坝及席状砂体,而研究区北半部大量宽泛的厚层优质河道砂却不含油,为大面积含水区。研究总结发现,砂体发育与岩性油气藏分布均受控于一挠曲坡折带,坡折带以内为低水位体系域沉积质量中心,砂岩厚薄相间,可形成地层超覆圈闭;坡折带之下为3个层序低水位和水进体系域三角洲前缘砂体叠合区,发育的砂岩较薄且连通性差,是多层位岩性圈闭和上倾尖灭型圈闭发育区;坡折带之上以水进体系域平原相及前缘相的大量厚层河道砂体为主,但因连通性好,油气易散失,不易形成岩性圈闭,而成为大范围的含水区。坡折带"控层""控相""控砂""控藏"的理论在本研究区又一次得到极好的应用与验证。  相似文献   
117.
In this paper an adaptive algorithm for Smoothed Particle Hydrodynamics (SPH) for the Shallow Water Equations (SWEs) is presented. The area of a particle is inversely proportional to depth giving poor resolution in small depths without particle refinement. This is a particular limitation for flooding problems of interest here. Higher resolution is created by splitting the particles, while particle coalescing (or merging) improves efficiency by reducing the number of the particles when acceptable. The new particle coalescing procedure merges two particles together if their area becomes less than a predefined threshold value. Both particle splitting and coalescing procedures conserve mass and momentum and the smoothing length of new particles is calculated by minimizing the density error of the SPH summation. The new dynamic particle refinement procedure is assessed by testing the numerical scheme against analytical, experimental and benchmark test cases. The analytical cases show that with particle splitting and coalescing typical convergence rates remain faster than linear. For the practical test case, in comparison to using particle splitting alone, the particle coalescing procedure leads to a significant reduction of computational time, by a factor of 15. This makes the computational time of the same order as mesh-based methods with the advantage of not having to specify a mesh over a flood domain of unknown extent a priori.  相似文献   
118.
This study investigates the morphology and Late Quaternary sediment distribution of the Makran turbidite system (Makran subduction zone, north‐west Indian Ocean) from a nearly complete subsurface mapping of the Oman basin, two‐dimensional seismic and a large set of coring data in order to characterize turbidite system architecture across an active (fold and thrust belt) margin. The Makran turbidite system is composed of a dense network of canyons, which cut into high relief accreted ridges and intra‐slope piggyback basins, forming at some locations connected and variably tortuous paths down complex slopes. Turbidite activity and trench filling rates are high even during the Holocene sea‐level highstand conditions. In particular, basin‐wide, sheet‐like thick mud turbidites, probably related to major mass wasting events of low recurrence time, drape the flat and unchannellized Oman abyssal plain. Longitudinal depth profiles show that the Makran canyons are highly disrupted by numerous thrust‐related large‐scale knickpoints (with gradients up to 20° and walls up to 500 m high). At the deformation front, the strong break of slope can lead to the formation of canyon‐mouth ‘plunge pools’ of variable shapes and sizes. The plunge pools observed in the western Makran are considerably larger than those previously described in sub‐surface successions; the first insights into their internal architecture and sedimentary processes are presented here. Large plunge pools in the western Makran are associated with large scoured areas at the slope break and enhanced sediment deposition downstream: high‐amplitude reflectors are observed inside the plunge pools, while their flanks are composed of thin‐bedded, fine‐grained turbidites deposited by the uppermost part of the turbidity flows. Thus, these architectural elements are associated with strong sediment segregation leading to specific trench‐fill mechanisms, as only the finer‐grained component of the flows is transferred to the abyssal plain. However, the Makran accretionary prism is characterized by strong along‐strike variability in tectonics and fluvial input distribution that might directly influence the turbidite system architecture (i.e. canyon entrenchment, plunge pool formation or channel development at canyon mouths), the sedimentary dynamics and the resulting sediment distribution. Channel formation in the abyssal plain and trench‐fill characteristics depend on the theoretical ‘equilibrium’ conditions of the feeder system, which is related closely to the balance between erosion rates and tectonic regime. Thus, the Makran turbidite system constitutes an excellent modern analogue for deep‐water sedimentary systems with structurally complex depocentres, in convergent margin settings.  相似文献   
119.
扬子地台西缘对Rodinia形成期地质响应   总被引:7,自引:0,他引:7  
扬子地台西缘冕宁-会理地区在中新元古代Rodinia形成期地质响应强烈,地质记录丰富,在中元古代时期,本区自北而南、自东而西由克拉通边缘盆地演变陆缘拗陷盆地(南部)和陆间裂谷盆地(西部);自新元古代以来,盆地构造演化分异更为明显,其北部会理天宝山地区形成岛弧(906Ma),而冕宁地区演变为弧后盆地,同时伴有广泛低绿片岩相区域动力变质,岛弧南部会理菜子园、西南部盐边荒田地区产生地块碰撞拼贴,形成混杂岩带(856Ma);西侧形成双成岩带(800.9-815Ma),沿该岩带产生高绿片岩相-麻粒岩相区域低压热流变质;随汇聚继续向陆块推进,产生新生火山弧(812Ma),并相继产生弧-陆碰撞,导致S型岩浆侵位(669-687Ma)。至此,本区陆块汇聚作用结束,至晚震旦世,重新拗陷转入被动大陆边缘盆地演化时期。  相似文献   
120.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号