首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   17篇
海洋学   1篇
  2011年   1篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2004年   1篇
  2002年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
A ca. 600 m thick siliciclastic succession in northern Russia contains abundant and diverse microfossils that document early to middle Ediacaran deposition along the northeastern margin of the East European Platform. The Vychegda Formation is poorly exposed but is well documented by a core drilled in the Timan trough region (Kel’tminskaya-1 borehole). Vychegda siliciclastics lie unconformably above Tonian to lower Cryogenian strata and below equivalents of the late Ediacaran Redkino succession that is widely distributed across the platform. The basal 10 m of the formation preserve acritarchs and fragments of problematic macrofossils known elsewhere only from pre-Sturtian successions. In contrast, the upper, nearly 400 m of the succession contains abundant and diverse large acanthomorphic acritarchs attributable to the Ediacaran Complex Acanthomorph Palynoflora (ECAP). This distinctive set of taxa is known elsewhere only from lower, but not lowermost, Ediacaran rocks. In between lies an additional assemblage of relatively simple filaments and stratigraphically long ranging sphaeromorphic acritarchs interpreted as early Ediacaran in age. Bearing in mind that knowledge of late Cryogenian (post-Strurtian/pre-Marinoan) microfossils is sparse, the Vychegda record is consistent with data from Australia and China which suggest that diverse ECAP microfossil assemblages appeared well into the Ediacaran Period. Accumulating paleontological observations underscore both the promise and challenges for the biostratigraphic characterization of the early Ediacaran Period.  相似文献   
12.
The Kyrpy Group of the East European platform is regarded by tradition as correlative with the Lower Riphean Burzyan Group of the Bashkirian meganticlinorium in the southern Urals. Age and correlation of the Kyrpy Group remain problematic, however, because of a limited geochronological information and controversial interpretation of paleontological materials. Data of C-and Sr-isotope chemostratigraphy contribute much to the problem solution. In the Kyrpy Group of the Kama-Belaya aulacogen, the Kaltasy Formation carbonates 1300 to 2400 m thick (boreholes 133 and 203 of the Azino-Pal’nikovo and Bedryazh areas) show 87Sr/86Sr ratios ranging around 0.7040 and narrow diapasons of δ13C values: about 0.5‰ (V-PDB) in shallow-water facies and-2.0‰ (V-PDB) in sediments of deeper origin. Despite the facies dependence of carbon isotope composition, δ13C variations not greater than ±1.0‰ are depicted in chemostratigraphic profiles of carbonate rocks characterizing separate stratigraphic intervals up to 800 m thick in the above borehole sections. Low 87Sr/86Sr ratios and almost invariant δ13C values in carbonates of the Kaltasy Formation are obviously contrasting with these parameters in the Middle and Upper Riphean deposits, being comparable with isotopic characteristics of the Lower Riphean sediments (Mesoproterozoic deposits older than 1300 Ma). Consequently, the results obtained evidence in favor of the Early Riphean age of the Kaltasy Formation and the Kyrpy Group as a whole.  相似文献   
13.
A biostratigraphic model of the temporal distribution of distinctive Proterozoic microfossil assemblages is suggested, based on studies of upper Precambrian chert-embedded and compression-preserved organic-walled microfossils from the reference sections of Eurasia, North America and Australia. Microfossils from 2.0 to 0.542 Ga can be divided into seven successive informal global units which can be compared to standard units of the International and Russian time scales. Each unit is characterized by a particular association of taxa, typified by the fossil assemblage that gives it its name. These form broad biostratigraphic units comparable to assemblage zones of Phanerozoic successions; in general (but with minor differences) they correspond to chronostratigraphic units accepted by the Internal Commission on Stratigraphy. The units are: (1) Labradorian, the upper part of the Paleoproterozoic (Orosirian and Statherian), 2.0–1.65 Ga; (2) Anabarian, lower Mesoproterozoic (Calymmian–Ectasian)/Lower Riphean–lower Middle Riphean, 1.65–1.2 Ga; (3) Turukhanian, upper Mesoproterozoic (Stenian)/upper Middle Riphean, 1.2–1.03 Ga; (4) Uchuromayan, lower Neoproterozoic (late Stenian–Tonian)/lower Upper Riphean, 1.03–0.85 Ga; (5) Yuzhnouralian, upper Neoproterozoic (Cryogenian)/upper Upper Riphean, 0.85–0.63 Ga; (6) Amadeusian, lower Ediacaran/lower Vendian, 0.63–0.55 Ga; (7) Belomorian, upper Ediacaran/upper Vendian, 0.55–0.542 Ga.  相似文献   
14.
Riphean basins of the central and western Siberian Platform   总被引:1,自引:0,他引:1  
The Siberian Platform is unique by its volume of Meso-Neoproterozoic sedimentary deposits. For about one billion years (∼1650-650 Ma) several sedimentary basins were developed here, resulting in the formation of several kilometers thickness of sedimentary cover. The Riphean (Mesoproterozoic-Lower Neoproterozoic) rocks are exposed mainly along platform peripheries. The most complete sections are represented by several megacycles. Each megacycle contains terrigenous series at the base and carbonate formations in the upper part. Several isolated and anisochronous basins were created during the Riphean on the territory of East Siberia. Some of them were intracratonic, others were developed on passive margins. Neoproterozoic orogeny along the platform boundaries resulted in re-organization of the Siberian basins, with extensive faulting, uplifting and erosion of the territories.In eastern Siberia, Riphean series contain large hydrocarbon accumulations. The reservoirs were formed mainly due to fracturing and leaching of carbonate strata (e.g. vugular carbonates of the pre-Vendian weathering crust). The Upper Proterozoic deposits are overlain by thick clayey-carbonate and saliferous-carbonate series of the Upper Vendian and Cambrian, isolating them from the upper sedimentary cover. The Riphean basins contained thick, organic rich, clayey and clayey carbonate. In some of them a hydrocarbon generation maximum took place at the end of the Riphean. The pre-Vendian erosion has removed a significant volume of Riphean sediments. During this time a majority of already formed hydrocarbon accumulations have been lost or degraded. Remaining Riphean series have generated hydrocarbons during the Paleozoic.Despite its complex history, the Riphean is still considered highly prospective, with source rocks developing at multiple levels and reservoirs occurring in both carbonate and clastic rocks. Discoveries of new oil-and-gas fields in East Siberia are likely, but will depend on integration of detailed seismic data and a large volume of core data for the correct prognosis of Riphean reservoir distribution.  相似文献   
15.
Enriched13C/12C ratios with δ13C ∼3%0 (w.r.t PDB) of two Late Riphean (∼ 700-610 Ma) intracratonic carbonate successions viz., Bhander Limestone of Vindhyan Basin and Raipur Limestone of Chattisgarh Basin suggest higher organic productivity during this period. This view is supported by sedimentological evidence of higher biohermal growth and consequent increase in depositional relief in the low gradient ramp settings inferred for these basins. Oxygen isotope analysis of these carbonates show distinct segregation between enriched deeper water carbonate mudstone and depleted shallow water stromatolite facies that received fresh water influx. This shows that facies-specific analyses can be useful in understanding the depositional setting of these sediments.  相似文献   
16.
Columnar stromatolites representing more than a half of species described in Precambrian stromatolite assemblages reveal a regular trend of size variations during the Proterozoic and Early Paleozoic. Their dimensional parameters grew gradually during the Paleoproterozoic to attain peak values in the Early Riphean and to decline steadily afterward during the Middle-Late Riphean, Vendian, and Cambrian. Size variations are established based on statistically averaged maximum diameters of columns calculated for 230 taxa and on percentages of large, medium and small species occurring in successive units of stratigraphic scale. The units correspond to three Paleoproterozoic subdivisions (time span from 2.3 to 1.65 Ga) and to five subdivisions of the Riphean, Vendian and Early Paleozoic jointly spanning a comparable period of geologic time. The results of calculation depict a unimodal variation curve with one infliction point designating inversion of ascending and descending trends in the Early Riphean time. The inversion and cardinal changes in taxonomic composition of the entire stromatolite community across the Riphean lower boundary appear to be interrelated. Abiotic events, which certainly influenced diversity of all, especially columnar stromatolites, have no manifestation however in the size-variation curve lacking perceptible oscillations in both the ascending and descending branches. Consequently, dimension parameters of columnar stromatolites appear to be independent of direct influence of abiotic events.  相似文献   
17.
Riphean stromatolitic formations flank the East European epi-Karelian platform only in the east and northeast. They are traceable as long (over 3600 km) relatively narrow belt consisting of two rectilinear segments, one running along the Urals western flank from southern extremity of the Bashkirian meganticlinorium to the Polyudov Ridge and the other one extending from the southern and central Timan to the Kil’din Island and northern Norway. Within the belt there are known stromatolitic formations of all Riphean erathems: the Lower and Middle Riphean stromatolitic buildups are confined to the eastern segment of its southern part only, while the Upper Riphean occur everywhere. Their distribution conformable to large structural elements of the plaform margin being replaced by carbonate-terrigenous rocks almost lacking stromatolites westward and southwestward in the Kama-Belaya aulacogen system and by substantially siliciclastic succession eastward and northeastward. The distribution area of Upper Riphean stromatolitic formations includes the Karatavian stratotype region, where 12 stromatolite beds ranging in age from ≥900 to 620 Ma are established. Many of the beds are traceable along the strike far beyond the stratotype region. Representing relatively small reference units, the beds facilitate reconstruction of distribution dynamics of the Upper Riphean stromatolites. Distribution area of the latter was always parallel to marginal structures of the platform, though being of changeable size, particularly of length. Originated in the stratotype region eastern part, stromatolites first advanced into northeastern areas never crossing boundaries of the Upper Riphean distribution area during the Early Karatavian. In the initial Late Karatavian, they occupied a longest distribution area that was sharply reduced at the end of that period. According to distribution peculiarities in space and with time, the Upper Riphean stromatolitic formations accumulated likely in peripheral areas of an open sea or oceanic basin adjacent to the East European platform, rather than in closed epiplatform basins.  相似文献   
18.
As is shown based on geochemical data and Sm-Nd isotopic systematics, accumulation of sandy deposits in the Riphean protoplatform cover of the Southeast Siberian platform was controlled by influx of primary and recycled sedimentary material derived from magmatic and metamorphic complexes of the eastern Aldan shield in the course of denudation of the Early Proterozoic accretionary orogen formed prior to 1.9 Ga. First indications of endogenic material influx into sedimentary basins are established in the Totta Formation of the Middle Riphean. They mean contribution to sedimentation of material weathered and eroded from external recycled orogens and synsedimentary volcanics that marked commencement of rifting in the platform marginal zone. Provenances of this material were situated most likely to the east and southeast off the Yudoma-Maya trough.  相似文献   
19.
Clay subfractions (SFs) of <0.1, 0.1–0.2, 0.2–0.3, 0.3–0.6, 0.6–2 and 2–5 μm separated from Middle Riphean shales of the Debengda Formation are studied using the TEM, XRD, K-Ar and Rb-Sr isotopic methods. The oxygen and hydrogen isotope compositions in the SFs are studied as well. The low-temperature illite-smectite is dominant mineral in all the SFs except for the coarsest ones. The XRD, chemical and isotopic data imply that two generations of authigenic illite-smectite different in age are mixed in the SFs. The illite crystallinity index decreases in parallel with size diminishing of clay particles. As compared to coarser SFs, illite of fine-grained subfractions is enriched in Al relative to Fe and Mg, contains more K, and reveals higher K/Rb and Rb/Sr ratios. The Rb-Sr age calculated by means of the leachochron (“inner isochron”) method declines gradually from 1254-1272 Ma in the coarsest SFs to 1038-1044 Ma in finest ones, while the K-Ar age decreases simultaneously from 1225–1240 to 1080 Ma. The established positive correlation of δ18O and δD values with dimensions of clay particles in the SFs seems to be also consistent with the mixing systematics. The isotopic systematics along with data on mineral composition and morphology lead to the conclusion that mixedlayer illite-smectite was formed in the Debengda shales during two periods 1211–1272 and 1038–1080 Ma ago. The first period is likely close to the deposition time of sediments and corresponds to events of burial catagenesis, whereas the second one is correlative with the regional uplift and changes in hydrological regime during the pre-Khaipakh break in sedimentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号