首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7292篇
  免费   1120篇
  国内免费   1639篇
测绘学   94篇
大气科学   203篇
地球物理   804篇
地质学   4650篇
海洋学   642篇
天文学   2148篇
综合类   318篇
自然地理   1192篇
  2024年   38篇
  2023年   106篇
  2022年   317篇
  2021年   322篇
  2020年   300篇
  2019年   332篇
  2018年   285篇
  2017年   275篇
  2016年   261篇
  2015年   315篇
  2014年   321篇
  2013年   376篇
  2012年   339篇
  2011年   353篇
  2010年   300篇
  2009年   554篇
  2008年   444篇
  2007年   495篇
  2006年   548篇
  2005年   417篇
  2004年   409篇
  2003年   454篇
  2002年   367篇
  2001年   307篇
  2000年   313篇
  1999年   259篇
  1998年   282篇
  1997年   189篇
  1996年   143篇
  1995年   126篇
  1994年   137篇
  1993年   85篇
  1992年   85篇
  1991年   45篇
  1990年   48篇
  1989年   26篇
  1988年   21篇
  1987年   22篇
  1986年   10篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   
992.
993.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   
994.
We have performed 2D bulge/bar/disc decompositions using g , r and i -band images of a representative sample of nearly 1000 galaxies from the Sloan Digital Sky Survey. We show that the Petrosian concentration index is a better proxy for the bulge-to-total ratio than the global Sérsic index. We show that pseudo-bulges can be distinguished from classical bulges as outliers in the Kormendy relation. We provide the structural parameters and distributions of stellar masses of ellipticals, classical bulges, pseudo-bulges, discs and bars, and find that 32 per cent of the total stellar mass in massive galaxies in the local universe is contained in ellipticals, 36 per cent in discs, 25 per cent in classical bulges, 3 per cent in pseudo-bulges and 4 per cent in bars. Pseudo-bulges are currently undergoing intense star formation activity and populate the blue cloud of the colour–magnitude diagram. Most (though not all) classical bulges are quiescent and populate the red sequence of the diagram. Classical bulges follow a correlation between the bulge Sérsic index and bulge-to-total ratio, while pseudo-bulges do not. In addition, for a fixed bulge-to-total ratio, pseudo-bulges are less concentrated than classical bulges. Pseudo-bulges follow a mass–size relation similar to that followed by bars, and different from that followed by classical bulges. In the fundamental plane, pseudo-bulges occupy the same locus as discs. While these results point out different formation processes for classical and pseudo-bulges, we also find a significant overlap in their properties, indicating that the different processes might happen concomitantly. Finally, classical bulges and ellipticals follow offset mass–size relations, suggesting that high-mass bulges might not be simply high-mass ellipticals surrounded by discs.  相似文献   
995.
We consider the luminosity and environmental dependence of structural parameters of lenticular galaxies in the near-infrared K band. Using a 2D galaxy image decomposition technique, we extract bulge and disc structural parameters for a sample of 36 lenticular galaxies observed by us in the K band. By combining data from the literature for field and cluster lenticulars with our data, we study correlations between parameters that characterize the bulge and the disc as a function of luminosity and environment. We find that scaling relations such as the Kormendy relation, photometric plane and other correlations involving bulge and disc parameters show a luminosity dependence. This dependence can be explained in terms of galaxy formation models in which faint lenticulars  ( M T > −24.5)  formed via secular formation processes that likely formed the pseudo-bulges of late-type disc galaxies, while brighter lenticulars  ( M T < −24.5)  formed through a different formation mechanism most likely involving major mergers. On probing variations in lenticular properties as a function of environment, we find that faint cluster lenticulars show systematic differences with respect to faint field lenticulars. These differences support the idea that the bulge and disc components fade after the galaxy falls into a cluster, while simultaneously undergoing a transformation from spiral to lenticular morphologies.  相似文献   
996.
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their H  i signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common H  i surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.  相似文献   
997.
998.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   
999.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号