首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   7篇
  国内免费   33篇
地球物理   52篇
地质学   342篇
海洋学   3篇
天文学   2篇
综合类   4篇
自然地理   15篇
  2024年   3篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   6篇
  2014年   10篇
  2013年   33篇
  2012年   25篇
  2011年   11篇
  2010年   9篇
  2009年   26篇
  2008年   28篇
  2007年   23篇
  2006年   18篇
  2005年   21篇
  2004年   18篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   19篇
  1999年   11篇
  1998年   7篇
  1997年   8篇
  1996年   9篇
  1995年   11篇
  1994年   5篇
  1993年   10篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有418条查询结果,搜索用时 0 毫秒
21.
Zedník  J.  Pospíšil  J.  Růžek  B.  Horálek  J.  Boušková  A.  Jedlička  P.  Skácelová  Z.  Nehybka  V.  Holub  K.  Rušajová  J. 《Studia Geophysica et Geodaetica》2001,45(3):267-282
In the time span from January 1995 to December 1999 the Czech National Seismological Network (CNSN), consisting of ten permanent digital broadband stations, several local networks and two data centers, detected and recorded 9530 regional natural seismic events, 27 greater than magnitude 2. Most of these events were located by the Czech Seismological Service (CSS), and the most prominent of them were analyzed in detail. A large number of quarry blasts were recorded as well but were not included in the analysis. We provide basic information on the configuration of the CNSN and on the way of routine data processing employed by the CSS in this paper. The over-all regional seismicity monitored by the CNSN in 1995–1999 is briefly reviewed. The main results of observations and evaluation of the local (NW-Bohemia/Vogtland, South Bohemia, Sudeten) and induced (Kladno, Píbram, Upper Silesia, Lubin/Poland) seismic activity within this period are presented in a condensed form. Finally, a summary on macroseismic observations on the territory of the Czech Republic in 1995–1999 is also presented.  相似文献   
22.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   
23.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   
24.
The mid-Carboniferous Pelhřimov core complex, Bohemian Massif, is a crustal-scale elongated granite–migmatite dome interpreted to have formed by gravity-driven diapiric upwelling of the metapelitic middle crust. The vertical diapiric flow is evidenced by outward-dipping foliation and lineation patterns, deformation coeval with the widespread presence of melt, rapid exhumation of the dome center from depths corresponding to pressure of about 0.6 GPa to shallow levels (pressure less than 0.2 GPa) within 2 M.y., and kinematic indicators of downward return flow of the mantling rocks. As compared to common diapirs, however, the Pelhřimov complex exhibits a more complicated inferred strain pattern with two perpendicular, irregularly alternating directions of horizontal extension in what is interpreted as the diapir head. Comparison of structural data from migmatites with anisotropy of magnetic susceptibility (AMS) data in granites also reveals that only final increments of strain are recorded in the granites. The map dimensions and gravity image of the complex suggest that the diapiric upwelling affected a large portion of the orogen's interior between two microplates brought together during continental collision. The northwesterly microplate (the upper-crustal Teplá–Barrandian unit) collapsed vertically as an ‘elevator’ at around 346–337 Ma whereas the easterly microplate (Brunia) was underthrust beneath the Moldanubian rocks during ∼346–330 Ma (the indentor). It is suggested that these microplates then acted as cold and rigid margins localizing mid-crustal diapirism and associated voluminous S-type granite plutons inbetween, parallel to the edge of the Brunia indentor.We conclude that bringing together soft metapelitic middle crust with two rigid lithospheric blocks during collision resulted in significant lateral temperature and strength variations across the orogen's interior. A general conclusion from these inferences is that granite–migmatite domes delineating margins of collided microplates may form as crustal-scale structures accommodating late-orogenic isostatic reequilibration.  相似文献   
25.
In the ultra-high pressure Metamorphic Kimi Complex widespread tonalitic–trondhjemitic dykes, with an intrusion age ca. 65–63 Ma, cross-cut boudins and layers of amphibolitized eclogites. Geochemical investigation proclaims the tied genetic relationship of the amphibolitized eclogites and the associated tonalitic–trondhjemitic dykes. The major and trace element contents and rare earth element patterns of the amphibolitized eclogites indicate formation of their protoliths by fractional crystallization of tholeiitic magmas in a back-arc environment. The tonalites and trondhjemites are characterized by moderate to high Sr contents (>130 ppm), and low Y (<8.2 ppm) and heavy rare earth element contents (Yb content of 0.19–0.88 ppm). The chemical composition of the tonalitic and trondhjemitic dykes are best explained by partial melting of a tholeiitic source like the amphibolitized eclogites with residual garnet and amphibole, at the base of a thickened crust during Early Tertiary subduction/accretion at the southern margins of the European continent.  相似文献   
26.
We use a fracture index distribution method of geostatistical modelling and prediction to characterize quantitatively the fracture system in two-dimensions (2D) in the Mina Ratones area, located in the Albalá Granitic Pluton (SW Iberian Massif). The fracture index (FI) is a quantitative estimate of the fracture density in discrete domains. To validate the results of geostatistical modeling a detailed structural map of the area was also made on a scale of 1:1000. The resulting grids, expressed as pixel-maps, describe the continuous value of the FI in 2D for the whole Mina Ratones area. Based on the modelled distribution of the FI and their correlation with mapped faults, we distinguish two structural domains in the studied area: elongated bands of fracture zones with high FI values and romboidal blocks located between them with low FI values. The separation between both domains is gradual. Though a threshold value of the FI that separate both structural domains is not clearly defined, the fracture zones generally present FI>1 and the individualized blocks FI<0.50. As a consequence, the obtained grid of the FI permits the quantitative structural classification of the granitic massif in 2D and understanding fault zone architecture in the Mina Ratones area.  相似文献   
27.
《Geodinamica Acta》2013,26(3-4):255-282
The Lycian molasse basin of SW Turkey is a NE-SW-oriented basin that developed on an imbricated basement, comprising the allochthonous Mesozoic rocks of the Lycian nappes and Palaeocene-Eocene supra-allochthonous sediments. The imbricated basement has resulted from a complex history related to the emplacement of different tectonic units from Late Cretaceous to Late Eocene. Following imbrication, extensional collapse of the Lycian orogen resulted in extensive emergent areas, some of which coincide with present-day mountains. These were surrounded by interconnected depressions, namely, the Kale-Tavas, Çardak-Dazk?r? and Denizli subbasins.

The Lycian molasse sequence contains a relatively complete record of the tectonic history of the Lycian orogenic collapse from which it was derived. The sequence is characterised by interdependence between tectonism and sedimentation, the latter of which includes fining-and coarsening-upward sedimentary cycles with syn-depositional intrabasinal unconformities.

The Denizli subbasin consists of thick, coarse-grained wedges of alluvial fans and fine-grained fan-delta deposits formed in a shallowmarine environment. Some areas of the fan deltas were colonised by corals, red algae and foraminifera, forming patch reefs.

The first phase of extensional collapse in the region is marked by the Lycian orogenic collapse, which may have been initiated by the beginning of the Oligocene (Rupelian), following the main Menderes metamorphism. Starting in the latest Early Miocene or in the Middle Miocene, the area of the molasse basin was subject to deformation with the Lycian nappes, and to erosion as well. At that time, the Lycian nappes, with some ophiolitic assemblages, were thrust over the molasse deposits and thus, NE-SW-trending folds were formed. The molasse deposits and thrust-related deformational structures were then unconformably covered by Upper Miocene continental deposits which belong to the neotectonic period of SW Turkey. The second phase of extensional collapse is marked by granitic intrusions and the formation of Miocene detachment-related extensional basins. This phase may have been related to the exhumation of the gneissic core of the Menderes Massif, from which fragments were derived and incorporated into the upper parts of the Denizli subbasin during the Aquitanian.  相似文献   
28.
Garnet lherzolite from the Lyonnais area (eastern French Massif Central) occurs as several lenses elongated within the regional foliation of garnet-biotite-sillimanite gneisses. Within the peridotites a mylonitic foliation can be observed which clearly is oblique to the regional foliation of the surrounding gneisses. Petrological and thermobarometric studies emphasize a tectonometamorphic re-equilibration for both crustal and mantle rocks characterized by a prograde metamorphic stage followed by retrograde evolution. During the burial stage, interpreted as lithospheric subduction, the peridotites underwent their mylonitic deformation, under high-pressure conditions (23–30 kbar). In contrast, the paragneisses have suffered their deformation during the retromorphic evolution under mesozonal conditions (6–8 kbar, 700°C). Our thermobarometric investigations allow us to interpret the granulitic/ultramafic association from the Monts du Lyonnais area as a lithospheric section buried into a Palaeozoic subduction zone, laminated during continental collision and uplifted by erosion processes.  相似文献   
29.
Rockslides in the Variscan orogenic belt of the Central Europe are a rare and poorly studied phenomenon. These relatively stable features have recently been shaped by secondary rockfall, toppling, sliding, or slumping. On afforested slopes, such processes can be efficiently analysed and dated by dendrogeomorphic methods. We performed detailed analyses of 355 increment cores from 81 Picea abies (L.) Karst. trees growing on two dormant rockslides in northeastern Czechia to reconstruct the activity of rock block movements and rockfalls. For the event determination we used standard event-response (It) index and a semi-quantitative approach involving logical spatial position of disturbed trees during a three-year period. Furthermore, climate preparatory and triggering factors were analysed to investigate possible main drivers of recent secondary processes. Overall, four periods of certain block reactivations at the Prudký site since 1940 and seven periods of certain block reactivations at the Rudohorský site since 1834 were reconstructed. Most of the events can be dated to the period 1960–2000, but our data do not indicate any high-magnitude activity. This paper also demonstrates the results of tree eccentric growth not only in the main supposed direction of stem tilting but also in the direction perpendicular to the main direction when ca. 40% of all trees growing on rock blocks recorded the movements in both analysed axes of stem tilting, suggesting possible complex deformation and different directions of block movements over time. It also appeared that the periods with greatest activity of secondary movements were characterised by a significantly higher rain-on-snow factor (p = 0.007 and 0.026 at the Prudký and the Rudohorský site, respectively) thus indicating block detachments during periods of rapid snowmelt.  相似文献   
30.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号