全文获取类型
收费全文 | 74篇 |
免费 | 7篇 |
国内免费 | 21篇 |
专业分类
测绘学 | 2篇 |
大气科学 | 17篇 |
地球物理 | 30篇 |
地质学 | 37篇 |
海洋学 | 13篇 |
自然地理 | 3篇 |
出版年
2021年 | 1篇 |
2020年 | 6篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2010年 | 1篇 |
2009年 | 7篇 |
2008年 | 11篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1986年 | 1篇 |
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
The dissolved methane (CH4) plume rising from the crater of the blowout well 22/4b in the Central North Sea was mapped during stratified water column conditions. Geochemical surveys were conducted close to the seafloor at 80.3 m water depth, below the thermocline (61.1 m), and in the mixed surface layer (13.2 m) using membrane inlet mass spectrometry (MIMS) in combination with a towed CTD. Seawater was continuously transferred from the respective depth levels of the CTD to the MIMS by using an inline submersible pump. Close to the seafloor a well-defined CH4 plume extended from the bubble release site ∼460 m towards the southwest. Along this distance CH4 concentrations decreased from a maximum of 7872 nmol l−1 to less than 250 nmol l−1. Below the thermocline the well-defined CH4 plume shape encountered at the seafloor was distorted and filaments were observed that extended towards the west and southwest in relation to current direction. Where the core of the bubble plume intersected this depth layer, footprints of high CH4 concentrations of up to 17,900 nmol l−1 were observed. In the mixed surface layer the CH4 distribution with a maximum of up to 3654 nmol l−1 was confined to a small patch of ∼60 m in diameter. The determination of the water column CH4 inventories revealed that CH4 transfer across the thermocline was strongly impeded as only ∼3% of the total water column inventory was located in the mixed surface layer. Best estimate of the CH4 seabed release from the blowout was 1751 tons yr−1. The fate of the trapped CH4 (∼97%) that does not immediately reach the atmosphere remains speculative. In wintertime, when the water column becomes well mixed as well as during storm events newly released CH4 and the trapped CH4 pool can be transported rapidly to the sea surface and emitted into the atmosphere. 相似文献
2.
Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally,two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling(superplume) systems. Based on this global mantle structure,we examine the distribution of extensional stress applied to the supercontinent by both subsupercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that:(1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat;(2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup;(3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force. 相似文献
3.
《地学前缘(英文版)》2020,11(6):2083-2102
Chromitite bodies hosted in peridotites typical of suboceanic mantle (s.l. ophiolitic) are found in the northern and central part of the Loma Caribe peridotite, in the Cordillera Central of the Dominican Republic. These chromitites are massive pods of small size (less than a few meters across) and veins that intrude both dunite and harzburgite. Compositionally, they are high-Cr chromitites [Cr# = Cr/(Cr + Al) atomic ratio = 0.71–0.83] singularly enriched in TiO2 (up to 1.25 wt.%), Fe2O3 (2.77–9.16 wt.%) as well as some trace elements (Ga, V, Co, Mn, and Zn) and PGE (up to 4548 ppb in whole-rock). This geochemical signature is unknown for chromitites hosted in oceanic upper mantle but akin to those chromites crystallized from mantle plume derived melts. Noteworthy, the melt estimated to be in equilibrium with such chromite from the Loma Caribe chromitites is similar to basalts derived from different source regions of a heterogeneous Caribbean mantle plume. This mantle plume is responsible for the formation of the Caribbean Large Igneous Province (CLIP). Dolerite dykes with back-arc basin basalt (BABB) and enriched mid-ocean ridge basalt (E-MORB) affinities commonly intrude the Loma Caribe peridotite, and are interpreted as evidence of the impact that the Caribbean plume had in the off-axis magmatism of the back-arc basin, developed after the Caribbean island-arc extension in the Late Cretaceous. We propose a model in which chromitites were formed in the shallow portion of the back-arc mantle as a result of the metasomatic reaction between the supra-subduction zone (SSZ) peridotites and upwelling plume-related melts. 相似文献
4.
Assessment of the ecological quality status of soft-bottoms in Reunion Island (tropical Southwest Indian Ocean) using AZTI marine biotic indices 总被引:1,自引:1,他引:1
Bigot L Grémare A Amouroux JM Frouin P Maire O Gaertner JC 《Marine pollution bulletin》2008,56(4):704-722
The ability of the two synthetic marine biotic indices, AMBI and M-AMBI, to account for changes in the ecological quality of coastal soft bottoms of Reunion Island according to disturbances was assessed from macrobenthic samples collected in five sectors between 1994 and 2004. Samples were collected under non-perturbed conditions and at two sites subjected to heavy organic enrichment. Both indices are based on a classification of macrofauna into ecological groups (EG), and their transfer to tropical waters required some adaptations. These indices proved efficient in detecting a degradation of habitat quality. Their use resulted in the classification of all sites sampled between 1996 and 1998 as "good" or "high". M-AMBI nevertheless tended to result in the attribution of a slightly worse ecological quality status than AMBI. Together with an update of the EG species list for the Indian Ocean area, our results support the extension of both indices for the assessment of tropical soft bottoms. 相似文献
5.
A number of experimental studies have tackled the issue of solute transport parameter assessments either in the laboratory or in the field. But yet, the behavior of a plume in the field under density driven forces, is not well known due to possible development of instabilities. Some field tracer tests on the fate of plumes denser than native groundwater such as those encountered under waste disposal facilities, have pointed out the processes of sinking and splitting at the early stage of migration. The process of dispersion was widely investigated, but the range of dispersivity values obtained from either experimental tests, or numerical and theoretical calculations is still very large, even for the same type of aquifers. These discrepancies were considered to be essentially caused by soil heterogeneities and scale effects. In the meantime, studies on the influence of sinking and fingering have remained more scarce. The objective of the work is to analyze how transport parameters such as dispersivities can be affected by unstable conditions, which lead to plume sinking and fingering. A series of tracer tests were carried out to study under natural conditions, the transport of a dense chloride solution injected in a shallow two-layered aquifer. Two types of experiments were performed: in the first type, source injection was such that the plume could travel downward from one layer to the other of higher pore velocity, and in the second one, the migration took place only in the faster layer. The results suggest some new insights in the processes occurring at the early stages of a dense plume migration moving in a stratified aquifer under groundwater fluctuations, which can be summarized through the following points: (i) Above a stability criterion threshold, a fingering process and a multi modal plume transport take place, but local dispersivities can be cautiously derived, using breakthrough curves matching. (ii) When water table is subject to some cycling or rising, the plume can be significantly distorted in the transverse direction, leading to unusual values of the ratio between longitudinal and transverse dispersivities. (iii) Under stable conditions, for example in the case of straightforward injection in the faster aquifer layer, longitudinal dispersivity is greater than the transverse component as usually encountered, and the obtained transport parameters are closed to macro dispersivity values, which reach their asymptotic limit at very short distances. (iv) The classical scale effect about the varying dispersivity at short distances could be a process mainly due to the distance required for a plume stabilization. 相似文献
6.
以Courllot、Yangshen、Fenglin Niu等人的几篇文章为基础介绍了目前对热柱起源较新的研究成果.以及如何利用地震学方法来研究冰岛热柱及南太洋超级隆起区的起源。 相似文献
7.
Continental rift systems and anorogenic magmatism 总被引:1,自引:0,他引:1
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes. 相似文献
8.
A monitoring mission to study the shape and estimate initial dilution of the S. Jacinto outfall plume using an autonomous underwater vehicle (AUV) was performed on July 30, 2002. In order to reduce the uncertainty about plume location and to concentrate the vehicle mission only in the hydrodynamic mixing zone, outputs of a near-field prediction model, based on effective real-time in situ measurements of current speed and direction and density stratification, were opportunistically used to specify in real time the mission transects. The surface characteristics of the outfall plume were found to be influenced strongly by the relatively weak stratification and low current velocities. Dilution was estimated using a temperature–salinity (TS-) diagram with initial mixing lines between wastewater and ambient waters. Effluent dilutions were at least 30:1 in this study. In order to efficiently map the plume dispersion we applied the least-squares collocation method technique. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a quite effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated. 相似文献
9.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins. 相似文献
10.
海底渗漏的羽状流是沉积层赋存天然气水合物的重要证据之一,基于非线性水声学原理的参量阵浅地层剖面仪作为海洋探测的重要设备,对于获得羽状流在水体中的物性特征和渗漏点的浅地层信息有着重大意义.本文根据ATLAS P70浅地层剖面仪在马克兰海域调查中得到的浅地层剖面数据,结合多道地震数据、多波束数据以及地质样品等资料,刻画了研究区内羽状流形态特征,分析了羽状流区海底地层流体运移的通道以及近海底微地形地貌特征.通过研究发现在羽状流区伴随泥火山喷发,自生碳酸盐岩发育,剥蚀海底松散沉积物形成大小不一的麻坑,滋生生物群落等特征.反映在浅剖初始高频(20 kHz)数据界面上羽状流表现为柱状浑浊反射异常,形态呈火焰状,高度由80 m到1500 m不等;对应在次级低频(4 kHz)信号界面可以清晰显示流体渗漏的浅地层结构特征,从中不仅可以识别出流体的运移通道,如泥火山和管状通道等,而且揭示了流体逸散的残留地貌,如麻坑构造和海底滑坡等.本文依托参量阵浅地层剖面数据,对巴基斯坦马克兰海域羽状流有了较全面的认识,为天然气水合物的研究垫定了基础. 相似文献