A new numerical method to solve the system of equations describing two phase flow in a Hele-Shaw cell is presented. It combines
a mixed finite element method, the method of subtraction of the singularity and a front tracking grid in a single computational
strategy. This choice of discretization techniques is well motivated by the difficulties present in the system of equations
and the physics of the problem. The new method was tested against analytical solutions and also by solving the Saffman–Taylor
viscous fingering problem for finite and infinite mobility ratios. In both cases convergence under mesh refinement is achieved
for the fingers developed from an initial sinusoidal interface. Finger splitting is observed for low values of the surface
tension and high mobility ratio. Different explanations, based in our results, are provided for this phenomenon.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
Carbon and nitrogen stable isotope ratios (13C and 15N) of surface sediments were measured within Osaka Bay, in the Seto Inland Sea in Japan, in order to better understand the sedimentation processes operating on both terrestrial and marine organic matter in the Bay. The 13C and 15N of surface sediments in the estuary of the Yodo River were less than –23 and 5 respectively, but increased in the area up to about 10 km from the river mouth. At greater distances they became constant (giving 13C of about –20 and 15N about 6). It can be concluded that large amounts of terrestrial organic matter exist near the mouth of the Yodo River. Stable isotope ratios in the estuary of the Yodo River within 10 km of the river mouth were useful indicators allowing study of the movement of terrestrial organic matter. Deposition rates for total organic carbon (TOC) and total nitrogen (TN) over the whole of the Bay were estimated to be 63,100 ton C/year and 7,590 ton N/year, respectively. The deposition rate of terrestrial organic carbon was estimated to be 13,200 (range 2,000–21,500) ton C/year for the whole of Osaka Bay, and terrestrial organic carbon was estimated to be about 21% (range 3–34) of the TOC deposition rate. The ratio of the deposition rate of terrestrial organic carbon to the rate inflow of riverine TOC and particulate organic carbon (POC) were estimated to be 19% (range 3–31) and 76% (range 12–100), respectively. 相似文献
In this experimental study,field observations and laboratory experiments have been carried out to assess the impacts of the vegetated channel walls and aspect ratio on flow velocity profiles,shear stress distribution and roughness coefficient of channel.Results show that the presence of vegetation cover on channel wall causes deviation of the Reynolds stress distribution from the linear one under uniform flow condition.It is also noticed that the Reynolds stress distribution is influenced by the aspect rati... 相似文献
A simple semi-hyperbolic state-dependent constitutive model for sand-structure interfaces is proposed. The model formulation is consistent with critical state soil mechanics since void ratio evolves continuously with shear strain from initial state towards asymptotic critical state at extremely large shear strains. The model takes into account influence of normal stiffness on volume change and stress path. The proposed interface model is implemented in a pile segment analysis scheme for simulation of shaft resistance mobilization in non-displacement piles. Results reveal that the proposed pile segment analysis can well predict shaft resistance of model piles embedded in different sands. 相似文献