首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1245篇
  免费   21篇
  国内免费   50篇
测绘学   11篇
大气科学   4篇
地球物理   27篇
地质学   154篇
海洋学   23篇
天文学   1078篇
综合类   5篇
自然地理   14篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   11篇
  2018年   8篇
  2017年   3篇
  2016年   12篇
  2015年   7篇
  2014年   16篇
  2013年   24篇
  2012年   16篇
  2011年   20篇
  2010年   23篇
  2009年   119篇
  2008年   105篇
  2007年   112篇
  2006年   132篇
  2005年   107篇
  2004年   101篇
  2003年   100篇
  2002年   72篇
  2001年   69篇
  2000年   64篇
  1999年   65篇
  1998年   63篇
  1997年   6篇
  1996年   6篇
  1995年   14篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1316条查询结果,搜索用时 15 毫秒
41.
The stability of Riemann S ellipsoids inside an oblate halo with respect to the second form of oscillations is investigated. It is shown that some ellipsoids with reverse internal circulation of matter, which are stable inside a spherical halo or in its absence, become unstable with respect to second odd forms of oscillation inside an oblate halo. Here there is asymmetry between conjugate ellipsoids from the standpoint of their stability. Only those conjugate ellipsoids that correspond to higher frequencies of reverse circulation of matter than their corresponding angular rotation rates are unstable. The domains of instability of light and heavy conjugate embedded ellipsoids are obtained as a function of the oblateness measure and relative density of the halo.  相似文献   
42.
The existence of the Fundamental Plane imposes strong constraints on the structure and dynamics of elliptical galaxies, and thus contains important information on the processes of their formation and evolution. Here we focus on the relations between the Fundamental Plane thinness and tilt and the amount of radial orbital anisotropy: in fact, the problem of the compatibility between the observed thinness of the Fundamental Plane and the wide spread of orbital anisotropy admitted by galaxy models has often been raised. By using N -body simulations of galaxy models characterized by observationally motivated density profiles, and also allowing for the presence of live, massive dark matter haloes, we explore the impact of radial orbital anisotropy and instability on the Fundamental Plane properties. The numerical results confirm a previous semi-analytical finding (based on a different class of one-component galaxy models): the requirement of stability matches almost exactly the thinness of the Fundamental Plane. In other words, galaxy models that are radially anisotropic enough to be found outside the observed Fundamental Plane (with their isotropic parent models lying on the Fundamental Plane) are unstable, and their end-products fall back on the Fundamental Plane itself. We also find that a systematic increase of radial orbit anisotropy with galaxy luminosity cannot explain by itself the whole tilt of the Fundamental Plane, the galaxy models becoming unstable at moderately high luminosities: at variance with the previous case, their end-products are found well outside the Fundamental Plane itself. Some physical implications of these findings are discussed in detail.  相似文献   
43.
44.
Recent work by several groups has established the properties of the dwarf satellites to M31. We reexamine the reported kinematics of this group employing a fresh technique we have developed previously. By calculating the distribution of a χ statistic (which we define in the paper) for the M31 system, we conclude that the total mass (disc plus halo) of the primary is unlikely to be as great as that of our own Milky Way. In fact the χ distribution for M31 indicates that, like NGC 3992, it does not have a massive halo. In contrast, the analysis of the satellites of NGC 1961 and NGC 5084 provides strong evidence for massive haloes surrounding both spiral galaxies.  相似文献   
45.
The behavior of the orbits in a galaxy model composed of an harmonic core and a strong bar potential is studied. Numerical calculations show that a large number of orbits display chaotic motion. These orbits are low angular momentun orbits. The percentage of chaotic orbits increases as the angular velocity of the system increases or the strength of the harmonic term decreases. A new dynamical parameter, the S(c) spectrum, is introduced and used to detect the island motion and the evolution of the sticky regions. Comparison to previously obtained results reveals the leading role of the new spectrum. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
46.
47.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
48.
We present a set of four Gemini-North Multi-Object Spectrograph/integral field unit (IFU) observations of the central disturbed regions of the dwarf irregular starburst galaxy NGC 1569, surrounding the well-known superstar clusters A and B. This continues on directly from a companion paper, in which we describe the data reduction and analysis techniques employed and present the analysis of one of the IFU pointings. By decomposing the emission-line profiles across the IFU fields, we map out the properties of each individual component identified and identify a number of relationships and correlations that allow us to investigate in detail the state of the ionized interstellar medium (ISM). Our observations support and expand on the main findings from the analysis of the first IFU position, where we conclude that a broad (≲400 km s−1) component underlying the bright nebular emission lines is produced in a turbulent mixing layer on the surface of cool gas knots, set up by the impact of the fast-flowing cluster winds. We discuss the kinematic, electron-density and excitation maps of each region in detail and compare our results to previous studies. Our analysis reveals a very complex environment with many overlapping and superimposed components, including dissolving gas knots, rapidly expanding shocked shells and embedded ionizing sources, but no evidence for organized bulk motions. We conclude that the four IFU positions presented here lie well within the starburst region where energy is injected, and, from the lack of substantial ordered gas flows, within the quasi-hydrostatic zone of the wind interior to the sonic point. The net outflow occurs at radii beyond 100–200 pc, but our data imply that mass-loading of the hot ISM is active even at the roots of the wind.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号