首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   77篇
  国内免费   107篇
测绘学   15篇
大气科学   281篇
地球物理   230篇
地质学   139篇
海洋学   15篇
天文学   1篇
综合类   13篇
自然地理   68篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   16篇
  2020年   25篇
  2019年   21篇
  2018年   9篇
  2017年   25篇
  2016年   15篇
  2015年   17篇
  2014年   25篇
  2013年   36篇
  2012年   22篇
  2011年   37篇
  2010年   23篇
  2009年   54篇
  2008年   48篇
  2007年   41篇
  2006年   39篇
  2005年   46篇
  2004年   37篇
  2003年   15篇
  2002年   25篇
  2001年   17篇
  2000年   15篇
  1999年   13篇
  1998年   18篇
  1997年   16篇
  1996年   9篇
  1995年   10篇
  1994年   13篇
  1993年   10篇
  1992年   9篇
  1991年   11篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有762条查询结果,搜索用时 31 毫秒
111.
制作汛期降水集成预报的分区权重法   总被引:3,自引:3,他引:0  
该文提出一种不受历史预报档案资料多少限制的集成预报方法。这个方法的基本思想是以各种不同预报的历史评分资料为基础,确定各个预报方法的权重。根据若干原则设计了16种预报方案。计算结果表明,这个方法具有较高的准确度和可行性,可以用于业务预报。  相似文献   
112.
Rainfall–runoff models with different conceptual structures for the hydrological processes can be calibrated to effectively reproduce the hydrographs of the total runoff, while resulting in water budget components that are essentially different. This finding poses an open question on the reliability of rainfall–runoff models in reproducing hydrological components other than those used for calibration. In an effort to address this question, we use data from the Glafkos catchment in western Greece to calibrate and compare the ENNS model, a research-oriented lumped model developed for the river Enns in Austria developed for the river Enns in Austria, with the operational MIKE SHE model. Model performance is assessed in the light of the conceptual/structural differences of the modelled hydrological processes, using indices calculated independently for each year, rather than for the whole calibration period, since the former are stricter. We show that even small differences in the representation of hydrological processes may impact considerably on the water budget components that are not measured (i.e. not used for model calibration). From all water budget components, direct runoff exhibits the highest sensitivity to structural differences and related model parameters.
EDITOR M.C. Acreman

ASSOCIATE EDITOR S. Huang  相似文献   
113.
Translational landslides and debris flows are often initiated during intense or prolonged rainfall. Empirical thresholds aim to classify the rain conditions that are commonly associated with landslide occurrence and therefore improve understating of these hazards and predictive ability. Objective techniques that are used to determine these thresholds are likely to be affected by the length of the rain record used, yet this is not routinely considered. Moreover, remotely sensed spatially continuous rainfall observations are under‐exploited. This study compares and evaluates the effect of rain record length on two objective threshold selection techniques in a national assessment of Scotland using weather radar data. Thresholds selected by ‘threat score’ are sensitive to rain record length whereas, in a first application to landslides, ‘optimal point’ (OP) thresholds prove relatively consistent. OP thresholds increase landslide detection and may therefore be applicable in early‐warning systems. Thresholds combining 1‐ and 12‐day antecedence variables best distinguish landslide initiation conditions and indicate that Scottish landslides may be initiated by lower rain accumulation and intensities than previously thought. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
114.
Patterns of overbank sedimentation in the vicinity of, and far removed from, levee breaks that occurred in response to the >100 year, summer 1993 flood in the upper Mississippi River valley are elucidated. Two suites of overbank deposits were associated with the failure of artificial levees within a 70 km long study reach. Circumjacent sand deposits are a component of the levee break complex that develops in the immediate vicinity of a break site. As epitomized by the levee break complex at Sny Island, these features consist of an erosional, scoured and/or stripped zone, together with a horseshoe-shaped, depositional zone. At locales farther removed from the break site, the impact of flooding was exclusively depositional and was attributed to the settling of suspended sediment from the water column. The overall picture was one of modest scour at break sites and minimal suspended deposition (<4 mm) at locales farther removed from the breach. Downriver from the confluence with the Missouri River, suspended sediment deposition was of a similar magnitude to that observed within the study reach and levee break complexes exhibited a similar morphology, but scour at break sites was greatly enhanced and the excavated sand formed extensive deposits on the floodplain surface. The different erosional response was probably engendered by the higher sand content and reduced aggregate cohesion of the floodplain soils downriver from the confluence with the Missouri River. A qualitative comparison serves to highlight the influence that the resistance threshold may have on the sensitivity of floodplains bordering large low-gradient rivers to high magnitude floods. © 1997 John Wiley & Sons, Ltd.  相似文献   
115.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   
116.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
117.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   
118.
Competition between human use and spring-dependent systems puts these systems in jeopardy. This study analyzed whether Florida springs have experienced reductions in springflow over the last century using time series data from state and federal agencies. Of 57 springs, 26 exhibited negative trends in springflow; these declines were correlated with population growth, with groundwater withdrawals, and to a lesser extent with rainfall. Even in a region with abundant rainfall, population growth has impacted spring integrity.  相似文献   
119.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   
120.
持续降雨是边坡发生失稳破坏的主要诱因之一,基于饱和—非饱和渗流理论,对梅州市大埔县某边坡的渗流场进行模拟,研究在不同降雨工况下该边坡土体体积含水率的时空变化规律。研究结果表明:相同条件下,降雨强度越大(降雨历时越长),边坡表层土体体积含水率变化越大;降雨强度60 mm/d历时1 d的暴雨对边坡表层土体体积含水率的增幅作用存在着一定的滞后性,其余工况未表现出滞后现象;降雨强度为120mm/d和300 mm/d的两种工况各研究点任意时段体积含水率较为接近;当降雨强度达到60 mm/d以上时,边坡内部体积含水率空间变化主要受降雨历时影响,降雨历时越长,降雨入渗深度和体积含水率变化越大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号