首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   112篇
  国内免费   316篇
测绘学   1篇
地球物理   22篇
地质学   993篇
海洋学   29篇
天文学   2篇
综合类   18篇
自然地理   14篇
  2024年   5篇
  2023年   8篇
  2022年   20篇
  2021年   20篇
  2020年   15篇
  2019年   36篇
  2018年   22篇
  2017年   26篇
  2016年   26篇
  2015年   22篇
  2014年   46篇
  2013年   36篇
  2012年   47篇
  2011年   46篇
  2010年   45篇
  2009年   45篇
  2008年   55篇
  2007年   59篇
  2006年   42篇
  2005年   34篇
  2004年   43篇
  2003年   23篇
  2002年   44篇
  2001年   31篇
  2000年   35篇
  1999年   27篇
  1998年   34篇
  1997年   30篇
  1996年   34篇
  1995年   19篇
  1994年   23篇
  1993年   25篇
  1992年   11篇
  1991年   13篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   1篇
排序方式: 共有1079条查询结果,搜索用时 31 毫秒
91.
东秦岭钼矿带位于华北板块南缘,NW-NWW向的固始―栾川深断裂带控制着钼矿床的空间分布.黄水庵碳酸岩脉型钼(铅)矿床的确定,为本矿带内已有碳酸岩脉型钼(铅)矿床(黄龙铺地区的大石沟、石家湾和桃园等)增添了又一新成员.本矿带不仅钼金属储量居世界已知单个钼矿带之首,而且碳酸岩脉和花岗斑岩两个成矿体系并存,亦是本区钼矿带的一大特色.业已查明,黄水庵和黄龙铺(大石沟)等碳酸岩脉型钼(铅)矿床的δ~(13)C=-5.3‰~-7.0‰,~(87)Sr/~(86)Sr=0.7049~0.7065.同时,方解石富含轻稀土(LREE/HREE=1.8~2.9).辉钼矿以富含Re(平均为110×10~(-6)~244×10~(-6))为特征.基于含矿碳酸岩脉方解石的Sr、Nd、Pb同位素比值(~(87)Sr/~(86)Sr对~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb对~(206)Pb/~(204)Pb和~(143)Nd/~(144)Nd对~(87)Sr/~(86)Sr)的关系图,我们初步判断本矿带区域陆壳之下可能存在有EMI(富集地幔Ⅰ),这些含矿碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物,成矿金属Mo、Pb主要来自EMI.根据黄水庵和黄龙铺(大石沟)钼(铅)矿床的成矿年龄(Re-Os年龄分别为209.5 Ma和221 Ma),我们推断,碳酸岩脉型钼(铅)矿床形成于华北和扬子两大板块三叠纪碰撞造山后伸展阶段的晚三叠世时期,而在侏罗纪陆内造山晚期的伸展阶段,形成了晚侏罗-早白垩世的斑岩型和斑岩-矽卡岩型钼矿床(Re-Os年龄介于147~116 Ma).  相似文献   
92.
The major part of the Peninsular Gneiss in Dharwar craton is made up of Trondjhemite-Tonalite-Granodiorite (TTG) emplaced at different periods ranging from 3.60 to 2.50 Ga. The sodic-silicic magma precursors of these rocks have geochemical features characteristic of partial melting of hydrated basalt. In these TTGs, enclaves of amphibolites (± garnet) are abundant. These restites are considered to be the residue of a basaltic crust after its partial melting. A detailed study of these (residue) enclaves reveals textures formed due to the process of partial melting. Major, trace and REE analysis of these residue enclaves and the melt TTGs and microprobe analysis of the coexisting minerals show partitioning of REE and HFSE between the precursor melt of TTGs and the upper amphibolite facies residues. Formation of garnetiferous amphibolites with biotite, Cpx and plagioclase consequent to melting, has squeezed the original MORB type of basaltic crust and given rise to the TTGs, depleted in Y, Yb, K2O, MgO, FeO, TiO2 and enriched in La, Th, U, Zr and Hf. Coevally during the process of melting, the hydrated basalt was depleted in Na2O, Al2O3, LREE, Th, U and enriched in K2O, MgO, Nb, Ti, Yb, Y, Sc, Ni, Cr and Co. Mineral chemistry of co-existing garnet-biotite and amphibole-plagioclase in these amphibolitic (restite) enclaves indicates an average temperature of 700 ± 50° C and pressure of 5 ± 1 Kbar. These data are inferred to indicate that during the garnet stability field metamorphism, effective fractionation of HREE and HFSE has taken place between the restites having Fe-Mg silicates, ilmenites and the extracted melt generated from the MORB type of hydrated basalt. These results are strongly substantiated by the reported melting experiments on hydrated basalts.  相似文献   
93.
阿巴宫铁矿床产于阿尔泰南缘晚志留世-早泥盆世的酸性火山岩中.矿体呈透镜状、脉状及似层状,受火山断裂构造控制,与围岩界线清楚;围岩蚀变不很发育,矿石品位较高;磷灰石与磁铁矿共生.其特征可以与瑞典北部Kiruna型铁矿床、宁芜玢岩铁矿床等进行对比.对阿巴宫铁矿床两个不同矿区磷灰石的稀土元素及微量元素组成的分析结果表明,磷灰石中∑REE变化于1352.96×10-6~6986.33×10-6之间,平均值为3717.70×10-6; (La/Yb)N比值变化于1.37~9.77之间,平均值5.22;δEu范围在0.22~0.30之间,平均值0.25;以轻稀土元素富集、轻重稀土元素分馏较弱和Eu的显著负异常为特征,与瑞典北部Kiruna型铁矿床、宁芜玢岩铁矿床相一致,表明阿巴宫铁矿床与上述铁矿床成因相同,均属岩浆分异成因.变质流纹岩稀土元素分布曲线形态与磷灰石的非常相似,微量元素特征也基本一致,表明铁的成矿作用与花岗质岩浆的分异-矿浆侵入有关.   相似文献   
94.
The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high‐P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta‐gabbroic xenoliths up to 2 km wide that are enclosed within meta‐leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite–anorthite–kyanite or corundum ± rutile assemblage, and as diffusion‐zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al‐enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite–staurolite–chlorite–plagioclase–epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high‐grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U‐Th‐Pb isotopes and trace elements by depth‐profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high‐P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages.  相似文献   
95.
邵建波  范继璋 《地球学报》2004,25(3):309-312
吉林南部早中元古宙老岭群珍珠门组镁质大理岩稀土地球化学特征可以划分为2种,分别发育于Ⅰ、Ⅱ分布区。Ⅰ分布区稀土总量相对较低,稀土分异差,曲线平坦;Ⅱ分布区稀土总量相对较高,稀土分异明显,曲线右倾。各区稀土特征的差别反映出来源和形成时大地构造环境的差别。大地构造环境Ⅰ分布区为与深大断裂有关的拗拉谷,Ⅱ分布区为具有火山活动的大陆裂谷。珍珠门组不具有地层意义,应当解体。  相似文献   
96.
舒小超  刘琰  李德良  贾玉衡 《岩石学报》2019,35(5):1372-1388
霓长岩化作用是指碳酸岩(或碱性岩)流体对围岩的交代蚀变,它是碳酸岩型稀土(REE)矿床常见的蚀变类型,其所形成的岩石即为霓长岩。对霓长岩的深入研究可以鉴别碳酸岩体的存在,厘定碳酸岩岩浆(或流体)的地球化学性质及源区特征,这对于找寻碳酸岩相关的矿产资源(尤其是REE)以及剖析矿床成因机制有着重要的地质意义。川西冕宁-德昌稀土矿带是中国最重要的轻稀土矿带之一,包括牦牛坪超大型、大陆槽大型、木落寨和里庄中小型REE矿床以及一系列矿点。REE矿化与碳酸岩-碱性岩杂岩体密切相关,受一系列新生代走滑断裂的控制。该矿带广泛发育霓长岩化蚀变带,尤以大陆槽及里庄矿床为显著。岩相学分析表明,大陆槽和里庄霓长岩中的矿物多呈他形粒状结构,主要由长石、黑云母、霓辉石以及少量副矿物组成;主微量元素分析表明,霓长岩的碱质(K_2O+Na_2O)、MgO、Fe_2O_3T含量较高,且富集REE、Sr、Ba等微量元素;电子探针分析表明,霓长岩中的霓辉石Fe OT含量较高,长石Na_2O及K_2O含量较高,Ca O含量极低。An-Ab-Or三角图解显示长石主要为透长石和钠长石,属碱性长石系列;黑云母的地球化学成分图解表明云母的成因类型为交代型且具有相对富镁、贫铁等特征,属镁质黑云母。霓长岩化作用的交代流体含有较高的CO_2组分,且富含碱质、Mg、Fe及REE、Sr、Ba等元素。对比霓长岩与原岩的主微量元素发现:相比于正长岩原岩,在主量元素中,霓长岩的Fe、Mg、Ca等元素含量增加,Si、Al等元素含量降低;微量元素中,霓长岩的REE及Sr、Ba等元素显著增加。这意味着交代流体含有的Fe_2O_3T、MgO、CaO等组分在霓长岩化过程中被带进了围岩,而SiO_2和Al_2O_3等从围岩中被逐出。大陆槽及里庄矿区发育的角砾岩指示了矿区曾经历过频繁的角砾岩化事件,这提高了霓长岩作用的强度,并且为矿脉的穿插及REE矿物的沉淀提供了空间。在霓长岩化过程中,流体-围岩的组分交换反复发生,这削弱了REE络合物的稳定性,伴随多期次的热液活动及构造事件,最终完成REE活化→迁移→沉淀的过程。  相似文献   
97.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   
98.
克拉麦里—塔克札勒—大黑山蛇绿岩建造稀土元素特征   总被引:3,自引:0,他引:3  
克拉麦里—塔克札勒—大黑山蛇绿岩建造稀土元素含量由变质橄榄岩—堆积橄榄岩—堆积辉长岩—玄武岩有规律增高 ,总体表现为轻稀土弱富集 ,L/H值大多数大于 1,局部有轻稀土亏损的特征。蛇绿岩建造各单元间稀土元素分布模式不尽相同 ,即使是同一单元在不同地段亦有差异 ,反映地幔岩浆的复杂性。基性熔岩稀土元素分布模式既有洋脊玄武岩的平坦曲线 ,又有轻稀土富集型的夏威夷等洋岛玄武岩的特征 ,反映该蛇绿岩带混杂着洋壳残骸和洋岛碎块。由清水—南明水东—塔克札勒基性熔岩稀土元素含量有规律递增 ,分别是球粒陨石的 9.4、15.4、18.9倍 ,反映玄武质岩浆分异程度逐渐增高 ,间接说明该岩带闭合时间由西向东从中泥盆世—晚石炭世末 ,再向东甚至延续至二叠纪  相似文献   
99.
莫托萨拉一带稀土元素地球化学特征及其地质意义   总被引:1,自引:1,他引:0       下载免费PDF全文
对莫托萨拉一带不同时代地质体中不同岩石稀土元素的分布,配分,比值进行研究,并探讨它们之间的某些成因关系,从分析结果看,莫托萨拉石炭系和三叠系花岗质砾岩,砂岩系盆地周围花岗质岩浆岩的风化产物,铁锰矿与火山岩间在稀土元素方面关系不密切,奥热且克沟铜矿石与变质围岩间有较密切的关系。  相似文献   
100.
金龙山—丘岭卡林型Sb—Au矿床的形成受沉积建造和岩相、剪切变形构造、后生成矿作用3种因素的控制,矿床属沉积—改造成因类型。根据REE含量、组成和特征参数,即REE、Ce/Y、(La/Sm)N、(La/Yb)N、δEu、δCe,探讨了该矿床的稀土元素地球化学及它与金龙山—丘岭矿床形成和演化的关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号