首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2808篇
  免费   245篇
  国内免费   1008篇
测绘学   70篇
大气科学   95篇
地球物理   447篇
地质学   3075篇
海洋学   162篇
天文学   37篇
综合类   41篇
自然地理   134篇
  2024年   22篇
  2023年   62篇
  2022年   96篇
  2021年   134篇
  2020年   218篇
  2019年   164篇
  2018年   191篇
  2017年   276篇
  2016年   194篇
  2015年   249篇
  2014年   373篇
  2013年   476篇
  2012年   378篇
  2011年   149篇
  2010年   121篇
  2009年   128篇
  2008年   80篇
  2007年   92篇
  2006年   94篇
  2005年   65篇
  2004年   66篇
  2003年   66篇
  2002年   68篇
  2001年   38篇
  2000年   40篇
  1999年   40篇
  1998年   39篇
  1997年   31篇
  1996年   31篇
  1995年   20篇
  1994年   16篇
  1993年   7篇
  1992年   15篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   7篇
  1985年   1篇
  1978年   1篇
排序方式: 共有4061条查询结果,搜索用时 218 毫秒
901.
Devonian–Carboniferous granites are widespread in Tasmania. In eastern Tasmania, Devonian granites intrude Ordovician–Early Devonian quartz-rich turbidites of the Mathinna Supergroup. The earliest (~400 Ma) I-type granodiorites may be arc-related. Following the Tabberabberan Orogeny (~389 Ma), more felsic and, finally, strongly fractionated I- and S-type granites were emplaced until ~373 Ma. In contrast, western Tasmania granites intrude a more diverse terrane of predominantly marine shelf successions, with depositional ages as old as Late Mesoproterozoic. They are mostly felsic and fractionated I- and S-types emplaced from ~374–351 Ma, possibly in response to post-collisional crustal extension following juxtaposition of the eastern and western Tasmanian terranes. Granites from the two terranes are readily distinguishable by the age spectra of their inherited zircon, which are noticeably similar to those of the detrital zircon from sedimentary successions in their respective terranes. Furthermore, within each terrane, both I and S-types yield similar inheritance patterns. This suggests a pivotal role for the sedimentary successions in the petrogenesis of both types. Western Tasmanian granites are also enriched in ~1600 Ma zircon, which is essentially unrepresented in the exposed supracrustal succession. Subtle differences between the inheritance and detrital age spectra in eastern Tasmania probably relate to unrepresentative sampling of the supracrustal rocks. Nd, Sr and Pb isotopic characteristics of the granites are consistent with their derivation by mixing of magmas derived from the mantle, possibly the lower crust, and from supracrustal rocks. Systematic isotopic trends in some eastern Tasmanian I-types, particularly in the Scottsdale Batholith, correlate well with major and trace element geochemistry and age. The isotopes are inconsistent with simple restite unmixing or crystal fractionation in a closed magma chamber, and indicate progressive contamination by the Mathinna Supergroup, or similar rocks. The isotopic characteristics of late, strongly fractionated granites, although sometimes obscured by hydrothermal alteration, are also consistent with concurrent assimilation-fractional crystallisation processes. Together with the close association of some strongly fractionated I- and S-types, this suggests that such granites were generated directly in the lower crust, and were not derived from unfractionated parental granite magmas.  相似文献   
902.
The last stage in the formation of the Arabian Nubian Shield in Jordan was dominated by post-orogenic igneous activity of the ∼610–542 Ma Araba Suite, including a monzogabbroic stock intruding the Saramuj Conglomerate, near the southeastern corner of the Dead Sea. The geological setting, petrography, geochemistry and geothermometry of the monzogabbro and other cogenetic varieties are used to shed light on the petrogenesis of this stock and reveal its magma source. The monzogabbro, megaporphyry dikes, and scattered syenite pockets are co-magmatic and alkaline, potassic and shoshonitic in nature. REE and trace elements patterns indicate that these magmas were produced from a mantle that had been modified by subduction-related metasomatism. The parental mafic magma could have been derived by 10% partial melting of LILE-enriched phlogopite-bearing spinel lherzolite, probably lithospheric mantle, in association with post-collisional extension. Fractional crystallization of this parental magma by olivine and pyroxene gave rise to the monzogabbroic magma.The megaporphyry dikes with their giant labradorite plagioclase megacrysts represent feeders of a voluminous volcanic activity that could have lasted for about 105 years.Thermodynamic modeling applying the MELTS software indicates crystallization of this suite in the temperature range of 1184–760 °C at a pressure of 2 kbars, agreeing with olivine-pyroxene, pyroxene, and two-feldspar thermometry. The modeled mineralogy and sequence of crystallization of constituent minerals using MELTS is in remarkable agreement with the observed modal mineralogy of the monzogabbro. Furthermore, a great degree of congruity exists between the modeled and observed chemistry of the major minerals with only minor discrepancies between modeled composition of biotite and olivine.  相似文献   
903.
We propose a conceptual model that examines the ‘variable source area’ (VSA) and ‘nitrate flushing’ hypothesis in the vertical direction, and use this approach to explain nitrate concentration–discharge relationships in a semi-arid watershed. We use an eco-hydrology simulation model (RHESSys) to show that small changes in the vertical distribution of nitrate mass and their interaction with soil hydraulic conductivity can result in abrupt changes in the nitrate concentration–discharge relationship. We show that the estimated concentration–discharge relationship is sensitive to the parameters governing soil vertical nitrate distribution and soil hydraulic conductivity, at both patch scale and watershed scale, where lateral redistribution of water and nitrate is also accounted for. Given heterogeneity in nitrogen inputs, uptake processes, soil drainage and storage processes, substantial variation in parameters that describe rate of changes in vertical distribution of soil nitrate and hydraulic properties is likely both within and between watersheds. Thus, we argue that vertical ‘variable source area’ processes may be as important as lateral VSA in determining concentration discharge relationships.  相似文献   
904.
Abstract

Hydrological models are often used for studying the hydrological effects of climate change; however, the stability of model performance and parameter values under changing climate conditions has seldom been evaluated and compared. In this study, three widely-used rainfall–runoff models, namely the SimHYD model, the HBV model and the Xin’anjiang model, are evaluated on two catchments subject to changing climate conditions. Evaluation is carried out with respect to the stability in their performance and parameter values in different calibration periods. The results show that (a) stability of model performance and parameter values depends on model structure as well as the climate of catchments, and the models with higher performance scores are more stable in changing conditions; (b) all the tested models perform better on a humid catchment than on an arid catchment; (c) parameter values are also more stable on a humid catchment than on an arid catchment; and (d) the differences in stability among models are somewhat larger in terms of model efficiency than in model parameter values.  相似文献   
905.
Abstract

Four economic porphyry Cu–Au deposits and several prospects have been investigated in the Northparkes district, part of the Ordovician to early Silurian Junee–Narromine Belt of the Macquarie Arc, New whole-rock geochemical data from the Northparkes porphyry Cu–Au district, NSW, indicate that the mineralising intrusive complexes exhibit distinct arc signatures that are transitional from high-K calc-alkaline to silica-saturated alkalic. Based on ratios of Sr/Y vs Y (e.g. Sr/Y > ~20 and Y < ~17?ppm) the mineralising intrusions are interpreted to have crystallised from fractionated hydrous melts indicating the suppression of plagioclase crystallisation in favour of hydrous mineral phases. This interpretation is supported by listric-shaped rare earth element curves and the presence of primary hornblende phenocrysts indicating elevated magmatic water contents. There is an association of mineralising intrusions with a low Zr trend both in the mineralised Northparkes district intrusive rocks and in mineralised porphyry-related intrusive rocks globally. A newly developed fertility indicator ratio Zr/Y ~10% is more accurate at identifying the mineralised rocks at Northparkes than the conventional Sr/Y vs Y fertility indicator diagram, successfully identifying 92% of the mineralising intrusions, mainly owing to the fact that it is less affected by hydrothermal alteration. The insensitivity of Zr–Y to alteration makes this indicator a useful new tool that may lead to enhanced probabilities for future discoveries in the Northparkes district, broader Macquarie Arc and altered rocks globally.
  1. KEY POINTS
  2. Mineralising intrusions in the Northparkes district have distinct Zr vs Y concentrations.

  3. The Zr vs Y indicator of magmatic fertility is less sensitive to alteration than Sr-based indicators.

  4. The Zr vs Y magmatic fertility indicator identified at Northparkes is not unique and identifies mineralising intrusions in other porphyry fields.

  相似文献   
906.
Management of water, regionally, nationally and globally will continue to be a priority and complex undertaking. In riverine systems, biotic components like flora and fauna play critical roles in filtering water so it is available for human use and consumption. Preservation of ecosystems and associated ecosystem functions is therefore vital. In highly regulated large river basins, natural ecosystems are often supported through provision of environmental flows. Flow delivery, however, should be underpinned by rigorous monitoring to identify and prioritise biotic water requirements. Currently, large-scale monitoring solutions are scaled from remote sensing data via measurement of field evapotranspiration for woody tree vegetation species. However, as there is generally a mismatch between field data collection area and remote sensing pixel size, new methods are required to proportion tree evapotranspiration based on tree fractional canopy area per pixel. We present a novel method to derive tree fractional canopy cover (FTCC) at 20 m resolution in semi-arid and arid floodplain areas. The method employs LiDAR as a canopy area field measurement proxy (10 m resolution). We used Sentinel-1 and Sentinel-2 (radar and multispectral imagery) in a Random Forest analysis, undertaken to develop a predictive FTCC model trained using LiDAR for two regions in the Murray–Darling Basin. A predictor model combining the results of both regions was able to explain between 71%–85% of FTCC variation when compared to LiDAR FTCC when output in 10% increments. Development of this method underpins the advancement of woody vegetation monitoring to inform environmental flow management in the Murray–Darling Basin. The method and fine scale outputs will also be of value to other catchment management concerns such as altered catchment water yields related to bushfires and as such has application to water management worldwide.  相似文献   
907.
The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70–1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu–Hf and monazite U–Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP–medium-T (MT) metamorphism (M1) developed within the staurolite–garnet stability field, with conditions ranging from 530550°C at 67 kbar (garnet cores) to 620650°C at 89 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP–high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P–T conditions ranged from 600 to 680°C and 4–6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730–770°C and 6–8 kbar, and at 750–790°C and 6 kbar, respectively. The pressure–temperature–deformation–time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56–1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.  相似文献   
908.
The Early Cretaceous–Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys. (a) The Early Cretaceous granitoids with relatively low (87Sr/86Sr)i ratios of 0.7090–0.7169 and εNd(t) values of ?9.8 to ?7.8 display metaluminous, calc-alkaline dominated by I-type granite affinity and hybrid mantle–crust geochemical signatures. They may have been derived from melting of the subducted Meso-Tethyan Bangong-Nujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting. (b) The Late Cretaceous–Paleocene granitoids with relatively high (87Sr/86Sr)i ratios of 0.7109–0.7627, and εNd(t) values of ?12.1 to ?7.9 exhibit metaluminous to peraluminous, calc-alkaline dominated by S-type granite affinity and hybrid Lower–Upper crust geochemical signatures, which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block. (c) The Early Eocene granitoids have metaluminous, calc-alkaline I-type and S-type granites dual affinity, with relatively high (87Sr/86Sr)i ratios of 0.711–0.736, εNd(t) values of ?9.4 to ?4.7, showing crust-mantle mixing geochemical signatures. They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao–Myitkyian oceanic crust, and collision between the Western Burma Block and the Tengchong Block. It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.  相似文献   
909.
This study presents new geochronological and geochemical data for Early Cretaceous volcanic rocks in the southern margin of the North China Craton (NCC), to discuss the crust–mantle interaction. The studied rocks include pyroxene andesites from Daying Formation, hornblende andesites and andesites from Jiudian Formation, and rhyolites from a hitherto unnamed Formation. These rocks formed in Early Cretaceous (138–120 Ma), with enrichment in light rare earth elements (REE), depletion in heavy REE and arc-like trace elements characteristics. Pyroxene andesites show low SiO2 contents and enriched Sr–Nd–Pb–Hf isotopic compositions, with orthopyroxene phenocryst and Paleoproterozoic (2320–1829 Ma) inherited zircons, suggesting that they originated from lithospheric mantle after metasomatism with NCC lower crustal materials. Hornblende andesites have low SiO2 contents and high Mg# (Mg# = 100 Mg/(Mg + Fe2+)) values, indicating a lithospheric-mantle origin. Considering the distinct whole-rock Sr isotopic compositions we divide them into two groups. Among them, the low (87Sr/86Sr)i andesites possess amount inherited Neoarchean to Neoproterozoic (2548–845 Ma) zircons, indicating the origin of lithospheric mantle with addition of Yangtze Craton (YC) and NCC materials. In comparison, the high (87Sr/86Sr)i andesites, with abundant Neoarchean–Paleozoic inherited zircons (3499–261 Ma), are formed by partial melting of lithospheric mantle with incorporation of NCC supracrustal rocks and YC materials. Rhyolites have extremely high SiO2 (77.63–82.52 wt.%) and low total Fe2O3, Cr, Ni contents and Mg# values, combined with ancient inherited zircon ages (2316 and 2251 Ma), suggesting an origin of NCC lower continental crust. Considering the presence of resorption texture of quartz phenocryst, we propose a petrogenetic model of ‘crystal mushes’ for rhyolites prior to their eruption. These constraints record the intense crust–mantle interaction in the southern margin of the NCC. Given the regional data and spatial distribution of Early Cretaceous rocks within NCC, we believe that the formation of these rocks is related to the contemporaneous far-field effect of the Paleo-Pacific Plate.  相似文献   
910.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号