首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   276篇
  国内免费   272篇
测绘学   38篇
大气科学   131篇
地球物理   324篇
地质学   621篇
海洋学   13篇
天文学   2篇
综合类   103篇
自然地理   122篇
  2024年   4篇
  2023年   11篇
  2022年   28篇
  2021年   24篇
  2020年   25篇
  2019年   42篇
  2018年   32篇
  2017年   44篇
  2016年   34篇
  2015年   28篇
  2014年   46篇
  2013年   60篇
  2012年   36篇
  2011年   45篇
  2010年   44篇
  2009年   67篇
  2008年   55篇
  2007年   81篇
  2006年   80篇
  2005年   58篇
  2004年   73篇
  2003年   63篇
  2002年   56篇
  2001年   44篇
  2000年   81篇
  1999年   27篇
  1998年   34篇
  1997年   34篇
  1996年   24篇
  1995年   17篇
  1994年   15篇
  1993年   8篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1979年   3篇
  1954年   4篇
排序方式: 共有1354条查询结果,搜索用时 890 毫秒
231.
本文旨在探索黄土塬地下煤层自燃区地震勘探技术。研究表明,火烧区在折射层析成像速度剖面、散射波地震记录、共偏移距地震剖面、地震反射波时间剖面中均有表征显示,而有别于采空区的波场特征。  相似文献   
232.
黄河源区新构造运动对生态环境恶化的影响   总被引:7,自引:0,他引:7  
基于黄河源区1:25万生态环境地质调查新获得的大量实际资料,通过分析和研究发现,黄河源区早更新世-中更新世处于走滑伸展的大陆动力学背景,在整体隆升中,形成断块山与拉分盆地,湖泊广布;晚更新世,大陆动力学机制过渡为挤压收缩,在整体抬升中,断块山显著崛起,湖盆萎缩、变形;全新世,大陆动力学环境反转为走滑挤压,持续隆升,黄河扩展源头到达本区,扎陵湖、鄂陵湖外泄,闭流盆地水环境转向开放.近代,特别是20世纪70年代以来,新构造活化与寒冻风化岩屑坡扩大、沙质荒漠化蔓延、湖泊和沼泽湿地萎缩、区域地下水位下降、源区黄河频繁断流、生态环境日益恶化响应关系密切.因此,新构造运动在黄河源区生态环境恶化中起主导作用,而其他因素则起到促进与加速的作用.  相似文献   
233.
近年来地质调查在班公湖-怒江缝合带中段发现了一批A型花岗岩,岩体呈面积不大(<1 km2)的岩株产出,岩性上分为钾长花岗岩和花岗闪长斑岩两种,侵入白垩系地层中.岩石化学上这些A型花岗岩相对富硅,SiO2含量在68.62%~75.36%之间,全碱含量(K2O+Na2O=8.03% ~ 9.37%)和全铁含量(FeO(T)...  相似文献   
234.
青藏高原是当今世界上最高、最大和最年轻的高原。青藏高原的地球动力学研究是一个复杂而饶有兴趣的问题。本文试图从高原的范围、地球物理特征、地震活动、构造演化和新构造运动等方面探讨其地球动力学过程。 从新构造分析,笔者着重指出,青藏高原是欧亚大陆板块中最活动的一个块体,它在造就中国乃至东亚新构造运动的格局方面,是一个十分重要的因素。  相似文献   
235.
青藏高原气象学的研究进展和问题   总被引:25,自引:1,他引:25  
分高原天气学、高原气候学、高原及邻近地区的大气环流、以及高原数值预报和模拟四方面简要回顾了新中国成立以来我国(也兼及国外)青藏高原气象学的主要进展,也提出今后研究中应注意的有关问题。  相似文献   
236.
青藏高原冰川对气候变化的响应及趋势预测   总被引:46,自引:3,他引:46  
青藏高原是世界上中低纬度地区最大的现代冰川分布区,这里冰川末端在近百年来总的进退变化趋势是退缩,但在本世纪初至20~30年代和70~80年代间多数冰川曾出现过稳定甚至前进。对比近百年来气候变化,冰川变化虽然滞后于温度变化,但它们之间存在着很好的对应关系,多数冰川对温度变化滞后时间在10~20年间。根据80年代以来平均物质净平衡值,大致将青藏高原划分为:内部为平衡或正平衡区;向外为负平衡区;边缘为强负平衡区。以冰川对气候响应滞后关系预测,在今后10~20年间,青藏高原边缘冰川末端仍继续处于后退,而高原内部冰川末端位置变化不大。  相似文献   
237.
青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用   总被引:63,自引:25,他引:63  
大陆碰撞与成矿作用是当代成矿学研究的重要前沿。与板块构造成矿作用研究相比,大陆碰撞造山带的成矿作用研究则明显薄弱。文章以青藏高原主碰撞带为对象,研究了印度-亚洲大陆主碰撞过程与区域成矿作用的耦合关系,并初步建立了主碰撞造山成矿模型。研究表明,印度-亚洲大陆主碰撞始于65Ma,延续至41Ma,形成了以藏南前陆冲断带、冈底斯主碰撞构造-岩浆带和藏北陆内褶皱-逆冲带为特征的青藏高原碰撞造山带主体。伴随陆-陆碰撞,在冈底斯带相继发育①壳源白云母花岗岩-钾质钙碱性花岗岩组合(66-50Ma)、②+εNd花岗岩-辉长岩组合(52-47Ma)和③幔源玄武质次火山岩-辉绿岩脉组合(42Ma),以及大面积分布的巨厚(5000m)的林子宗火山岩系(65-43Ma),反映深部相继发生大陆碰撞和板片陡深俯冲(65-52Ma)→板片断离(52-42Ma)→板片低角度俯冲(〈40Ma)等重要过程。在主碰撞期,初步识别出4个重要的成矿事件:①与壳源花岗岩有关的Sn、稀有金属成矿事件,在藏东滇西形成腾冲Sn、稀有金属矿集区;②与壳/幔花岗岩有关的Cu-AuMo成矿事件,在冈底斯南缘形成长达百余公里的Cu-Au矿化带;③与碰撞造山有关的剪切带型Au成矿事件,沿雅鲁藏布江缝合带分布,形成具有较大成矿潜力的A-u矿化带;④与挤压抬升有关的Cu-Au成矿事件,形成以雄村大型铜金矿为代表的斑岩型/浅成低温复合型Cu-Au矿床。在综合研究基础上,初步建立了大陆主碰撞造山区域成矿模型。  相似文献   
238.
The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau, where active faults are well developed and earthquakes frequently occur. Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards. Based on the analysis of remote sensing interpretations, geological field surveys, geophysical prospecting and geological dating results, this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County, Sichuan Province, and investigates its geological age and formation mechanism. This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP. The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km, with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area. The landslide movement was characterized by a high speed and long runout. During the sliding process, the landslide body eroded and dammed the ancient Minjiang River valley. The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area. Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick. After the dam broke, the Minjiang River was migrated to the current channel at the leading edge of the landslide. The Gamisi ancient landslide was greatly affected by the regional crustal uplift, topography, geomorphology and paleoclimatic change. The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured, thus providing a lithological foundation for landslide occurrence. Intense tectonic activity along the Minjiang Fault, which runs through the middle and trailing parts of the Gamisi ancient landslide, may have been the main factor inducing landsliding. Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.  相似文献   
239.
黄河兰州谷地新构造运动的初步研究   总被引:8,自引:1,他引:8  
李森  王跃 《地质论评》1993,39(3):259-267
通过分析新构造运动在黄河兰州谷地的表现,证明自上新世末以来本区新构造运动强烈,相继发生过3次主要构造事件,制约和影响黄河兰州谷地的形成、发育及环境演变。新构造运动以脉动式整体抬升和差异式断块运动的方式活动,使本区自2.4Ma以来上升约800m。由于特定的地貌位置和特殊的区域地质构造,本区新构造运动完全受制于青藏高原阶段性强烈隆起。  相似文献   
240.
不同降雨条件下黄土高原浅层滑坡危险性预测评价   总被引:4,自引:0,他引:4  
黄土地区浅层滑坡发育非常广泛,由于其具有分布规律性差、前期变形迹象小、分布范围大、面小点多等特征,目前还无法进行有效预测,因此给黄土地区工程安全带来严重威胁。根据无限边坡模型,结合降雨入渗-土体强度衰减规律和GIS(地理信息系统)技术,构建了不同降雨条件下黄土地区浅层滑坡发育危险性评价模型,并将该评价模型应用到延河一级支流幸福川流域,预测在有效降雨量30、50、100、200 mm条件下,该流域浅层滑坡发育程度,并与当前较为流行的SINMAP模型(地形稳定性模型)进行对比。结果表明:①不稳定和潜在不稳定浅层滑坡主要分布在末级河流的两侧和源头,稳定和较稳定区域主要分布在一级河流河道两侧和塬面上;通过对比分析,SINMAP模型计算的结果与本文建立的模型在降雨强度30 mm时的计算结果较为一致。②在本文建立的模型评价结果中,随着有效降雨量的增加,Fs(稳定性系数)<1.00的不稳定区域所占比例逐渐增加,从30 mm的1.12%到200 mm的4.79%;相反,稳定区域则出现逐渐减少的趋势。③根据已发生灾害点的分布,随着有效降雨量的增加,研究区域已发生的灾害点分布在Fs<1.25的比例明显增加,从30 mm的62%到200 mm的88%,在SINMAP评价模型中,研究区域已发生的灾害点的64%分布在不稳定和潜在不稳定区域内,说明本文所建立的评价模型具有一定的精度。通过与SINMAP评价模型对比,本文建立的模型主要采用基于降雨入渗规律,而SINMAP评价模型主要基于降雨汇流过程,因此在利用过程中应根据区域特征选择利用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号