首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   122篇
  国内免费   276篇
测绘学   4篇
地球物理   124篇
地质学   1045篇
海洋学   33篇
天文学   1篇
综合类   46篇
自然地理   33篇
  2024年   4篇
  2023年   10篇
  2022年   12篇
  2021年   19篇
  2020年   26篇
  2019年   32篇
  2018年   29篇
  2017年   14篇
  2016年   30篇
  2015年   25篇
  2014年   39篇
  2013年   92篇
  2012年   42篇
  2011年   41篇
  2010年   20篇
  2009年   53篇
  2008年   52篇
  2007年   57篇
  2006年   51篇
  2005年   39篇
  2004年   55篇
  2003年   51篇
  2002年   50篇
  2001年   34篇
  2000年   53篇
  1999年   57篇
  1998年   38篇
  1997年   43篇
  1996年   33篇
  1995年   44篇
  1994年   31篇
  1993年   26篇
  1992年   21篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1286条查询结果,搜索用时 15 毫秒
211.
The basal unit of the Amadeus Basin sequence is the Heavitree Quartzite, and this formation usually forms a single east‐west ridge along the northern side of the MacDonnell Ranges. However, at Alice Springs there are two such ridges. Basement rocks crop out on the northern side of each ridge, and dolomite and shale of the Bitter Springs Formation crop out on their southern sides. The northern outcrop of dolomite and shale is tightly folded, and is separated from the southern outcrop of basement by a major fault. The bedding of the sediments, the axial plane of the fold, and the fault all dip south at about 45°. Inverted facings on parasitic folds indicate that the northern outcrop of quartzite and dolomite plus shale is an antiform in inverted rocks. Hence the southern outcrop of basement and quartzite is synformal, and is interpreted as the frontal part of a fold nappe. The nappe started as a recumbent anticline whose middle limb of quartzite sheared out as the anticline travelled several kilometres southwards relative to the dolomite and shale below, which formed a tight recumbent syncline. Later monoclinal uplift of the northern half of the area tilted the nappe into its present south‐dipping attitude, thus converting the recumbent anticline into a synform and the recumbent syncline into an antiform.  相似文献   
212.
Kaolinite claystones that are similar in structure, texture and composition to the kaolin tonsteins of Western Europe, and to some of the flint clays of North America, are associated with the Wongawilli Seam in the southern part of the Sydney Basin, where they form thin persistent bands within the coal and somewhat thicker deposits immediately overlying the seam. The thin bands within the coal are fine grained and consist of brecciated to pelletal clasts composed of well‐ordered kaolinite set in a matrix of similar composition. The thicker deposits overlying the seam are much coarser grained and appear restricted in occurrence to the basin margins. They contain a predominance of oolites with kaolinite clasts bonded by a relatively sparse matrix and in places, remarkable ‘outgrowths’ of vermicular kaolinite. The origin of the deposits is discussed, and it is concluded that most of the unusual features of these claystones can be ascribed to a fluvial environment.  相似文献   
213.
In ternary feldspars of essentially one phase, calcium content has a dominant influence on the optic axial angle. In such feldspars and also in binary feldspars from solvsbergite rocks, variations of cooling histories do not significantly affect the optic axial angle. In ternary feldspars which are unmixed into two or three prominent phases, Al/Si ordering has an important effect on the 2V value. A recent suggestion of several writers that in feldspars the alkali structural site may be partially occupied by (H3O)+ ions is applied as a possible way to explain a correlation observed between petrographical features of the rocks and the optic axial angles of their feldspar phenocrysts.  相似文献   
214.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   
215.
An interpretation of the origins of folds and joints, which affect the Tertiary Brown Coal Measures of the Latrobe Valley, leads to the proposal that the geological structures have been formed under a regional Late Tertiary NNW‐SSE compressive stress. Considerations of the pattern of measured in situ stresses and of interpreted stresses, derived from earth movements around open cuts and from earthquakes, indicate that a regional NNW‐SSE compressive stress is still in existence in the SE part of Australia at the present time.

It is proposed that the consistencies in the stress orientations reflect consistencies in the Late Tertiary to Recent global movements of the Australian plate.  相似文献   
216.
The Parnell Quartz Monzonite in the Pilbara Block of Western Australia is a Proterozoic (1731 ± 14 Ma) pluton characterized by high modal K‐feldspar and a greater abundance of hornblende relative to biotite, as is typical of Phanerozoic monzonitic rocks in eastern Australia. The only geochemical features reflecting its setting in an Archaean terrain are high Na2O, Ni and Cr. The pluton is zoned, with an increase in K‐feldspar, quartz and biotite and a decrease in plagioclase and hornblende from margin to core. Chemically, this zoning is reflected by systematic variation of CaO, K2O, Na2O, Sr and Rb, but ferromagnesian elements have irregular trends, implying preferential extraction of feldspars relative to mafic minerals during differentiation of the magma. The unusual geochemical trends are explained by a model involving ‘in situ’ feldspar fractionation of a K‐rich residual liquid from a mafic crystalline mush.

A parent magma similar to the average rock composition of the pluton is deduced because high ferromagnesian trace element abundances preclude extensive fractionation of mafic minerals. Geochemical and isotopic constraints suggest that the ultimate source was chemically similar to a shoshonitic basaltic andesite, that must have been emplaced beneath the eastern margin of the Pilbara Block in the Early Proterozoic. Subsequent partial melting of this postulated underplated source at ~ 1700 Ma to produce the Parnell Quartz Monzonite was probably associated with tectonism in the Gregory Range Complex.  相似文献   
217.
The basement rocks of the poorly understood Thomson Orogen are concealed by mid-Paleozoic to Upper Cretaceous intra-continental basins and direct information about the orogen is gleaned from sparse geological data. Constrained potential field forward modelling has been undertaken to highlight key features and resolve deeply sourced anomalies within the Thomson Orogen. The Thomson Orogen is characterised by long-wavelength and low-amplitude geophysical anomalies when compared with the northern and western Precambrian terranes of the Australian continent. Prominent NE- and NW-trending gravity anomalies reflect the fault architecture of the region. High-intensity Bouguer gravity anomalies correlate with shallow basement rocks. Bouguer gravity anomalies below –300 µm/s2 define the distribution of the Devonian Adavale Basin and associated troughs. The magnetic grid shows smooth textures, punctuated by short-wavelength, high-intensity anomalies that indicate magnetic contribution at different crustal levels. It is interpreted that meta-sedimentary basement rocks of the Thomson Orogen, intersected in several drill holes, are representative of a seismically non-reflective and non-magnetic upper basement. Short-wavelength, high-intensity magnetic source bodies and colocated negative Bouguer gravity responses are interpreted to represent shallow granitic intrusions. Long-wavelength magnetic anomalies are inferred to reflect the topography of a seismically reflective and magnetic lower basement. Potential field forward modelling indicates that the Thomson Orogen might be a single terrane. We interpret that the lower basement consists of attenuated Precambrian and mafic enriched continental crust, which differs from the oceanic crust of the Lachlan Orogen further south.  相似文献   
218.
Abstract

Potentially mineralised Paleozoic basement rocks in the southern Thomson Orogen region of southern Queensland and northern New South Wales are covered by varying thicknesses of Mesozoic to Cenozoic sediments. To assess cover thickness and methods for estimating depth to basement, we collected new airborne electromagnetic (AEM), seismic refraction, seismic reflection and audio-frequency magnetotelluric data and combined these with new depth to magnetic basement models from airborne magnetic line data and ground gravity data along selected transects. The results of these investigations over two borehole sites, GSQ Eulo 1 and GSQ Eulo 2, show that cover thickness can be reliably assessed to within the confidence limits of the various techniques, but that caveats exist regarding the application of each of the disciplines. These techniques are part of a rapid-deployment explorers’ toolbox of geophysical techniques that have been tested at two sites in Australia, the Stavely region of western Victoria, and now the southern Thomson Orogen in northern New South Wales and southern Queensland. The results shown here demonstrate that AEM and ground geophysics, and to a lesser extent depth to magnetic source modelling, can produce reliable results when applied to the common exploration problem of determining cover thickness. The results demonstrate that portable seismic systems, designed for geotechnical site investigations, are capable of imaging basement below 300 m of unlithified Eromanga Basin cover as refraction and reflection data. The results of all methods provide much information about the nature of the basement–cover interface and basement at borehole sites in the southern Thomson Orogen, in that the basement is usually weathered, the interface has paleotopography, and it can be recognised by its density, natural gamma, magnetic susceptibility and electrical conductivity contrasts.  相似文献   
219.
The Tarim Craton is one of three large cratons in China. Presently, there is only scant information concerning its crustal evolutionary history because most of the existing geochronological studies have lacked a combined isotopic analysis, especially an in situ Lu–Hf isotope analysis of zircon. In this study, Precambrian basement rocks from the Kuluketage and Dunhuang Blocks in the northeastern portion of the Tarim Craton have been analyzed for combined in situ laser ablation ICP-(MC)-MS zircon U–Pb and Lu–Hf isotopic analyses, as well as whole rock elements, to constrain their protoliths, forming ages and magma sources. Two magmatic events from the Kuluketage Block at ∼2.4 Ga and ∼1.85 Ga are revealed, and three stages of magmatic events are detected in the Dunhuang Block, i.e., ∼2.0 Ga, ∼1.85 Ga and ∼1.75 Ga. The ∼1.85 Ga magmatic rocks from both areas were derived from an isotopically similar crustal source under the same tectonic settings, suggesting that the Kuluketage and Dunhuang Blocks are part of the uniform Precambrian basement of the Tarim Craton. Zircon Hf model ages of the ∼2.4 Ga magmatism indicate that the crust of the Tarim Craton may have been formed as early as the Paleoarchean period. The ∼2.0 Ga mafic rock from the Dunhuang Block was formed in an active continental margin setting, representing an important crustal growth event of the Tarim Craton in the mid-Paleoproterozoic that coincides with the global episode of crust formation during the assembly of the Columbia supercontinent. The ∼1.85 Ga event in the Kuluketage and Dunhuang Blocks primarily involved the reworking of the old crust and most likely related to the collisional event associated with the assembly of the Columbia supercontinent, while the ∼1.75 Ga magmatism in the Dunhuang Block resulted from a mixture of the reworked Archean crust with juvenile magmas and was most likely related to a post-collisional episode.  相似文献   
220.
俄久卖高级变质岩位于藏北羌塘盆地中央隆起带北缘的玛依岗日地区,是目前羌塘盆地基底高级变质岩石的唯一代表。该高级变质岩由正片麻岩和副片麻岩组成,本文以正片麻岩为研究重点。正片麻岩锆石CL图像显示出明显的核一幔一边结构。根据LA—ICP—MS锆石u—Pb测年结果,锆石核部年龄范围为242~2490Ma,记录了岩浆岩源岩的年代信息:锆石幔部具有典型的岩浆振荡环带结构,年龄为207Ma±2Ma,相应的Th/u值介于0.02-0.30之间,代表正片麻岩原岩的岩浆结晶时代.该年龄与羌塘中部地区晚三叠世高压变质作用和岛弧岩浆作用在时空上相对应。锆石增生边的年龄为161~197Ma.对应的Th/u值介于0.02-0.15之间,代表片麻岩发生主变质作用的时代,可能是班公湖一怒江洋盆向北的俯冲消减作用在羌塘中部地区的响应。地球化学资料显示,正片麻岩具有类似岛弧型火山岩的地球化学特征。综合区域地质资料,俄久卖高级变质岩原岩的形成与区域上广泛存在的晚三叠世构造、岩浆及角度不整合事件相对应,可能指示羌塘盆地统一基底的形成时代为晚三叠世。这对深入认识羌塘盆地基底的时代、性质及含油气盆地资源远景评价等具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号