首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   119篇
  国内免费   155篇
测绘学   327篇
大气科学   18篇
地球物理   200篇
地质学   576篇
海洋学   125篇
综合类   44篇
自然地理   70篇
  2024年   3篇
  2023年   3篇
  2022年   14篇
  2021年   31篇
  2020年   35篇
  2019年   31篇
  2018年   21篇
  2017年   68篇
  2016年   58篇
  2015年   45篇
  2014年   69篇
  2013年   63篇
  2012年   49篇
  2011年   57篇
  2010年   47篇
  2009年   79篇
  2008年   84篇
  2007年   80篇
  2006年   67篇
  2005年   58篇
  2004年   45篇
  2003年   51篇
  2002年   43篇
  2001年   38篇
  2000年   28篇
  1999年   21篇
  1998年   24篇
  1997年   19篇
  1996年   28篇
  1995年   13篇
  1994年   19篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   13篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1954年   2篇
排序方式: 共有1360条查询结果,搜索用时 906 毫秒
311.
闽江河口沉积结构与沉积作用   总被引:9,自引:0,他引:9  
结合已有的闽江河口航道整治研究成果,在该河口采集了130多个表层沉积物样品。根据对沉积结构、河口沙坝类型和水动力条件的分析,探讨了闽江河口沉积物的分布规律和沉积作用机制。研究结果表明,1)闽江河口可划分为砂质、混合和泥质3个沉积区,它们分别代表三角洲前缘、前缘斜坡和前三角洲沉积环境;2)闽江河口各汊道径、潮流强度对比不同,河口沉积过程有显著差异。径流在川石水道的发育中居主导作用,潮流是塑造梅花水道的主要因素;3)河口沙坝类型受制于输出水流的扩散形式,闽江河口有多种类型的河口沙坝,川石水道的河口沙坝为水下突堤型,乌猪水道北侧发育了水下突堤型沙坝,熨斗水道为拦门沙型河口沙坝,梅花水道则是潮流脊型的河口沙坝。  相似文献   
312.
The interaction between wave, seabed and marine structure is a vital issue in coastal engineering, as well as marine geotechnical engineering. However, most previous investigations have been focused on the wave forces acting on the structure from the aspect of hydrodynamics. In this study, we will examine the problem of wave-seabed-caisson interaction from the aspect of marine geotechnical engineering. Based on Biot's poro-elastic theory (Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164), a two-dimensional finite element model is proposed to investigate the wave-induced soil response in the vicinity of a caisson. Based on the numerical model, the water wave driven pore pressure around a caisson will be examined through a parametric analysis.  相似文献   
313.
314.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   
315.
Experimental investigations are carried out on wave-induced pressures and uplift forces on a submarine pipeline (exposed, half buried and fully buried) in clayey soil of different consistency index both in regular and random waves. A study on scour under the pipeline resting on the clay bed is also carried out. It is found that the uplift force can be reduced by about 70%, if the pipeline is just buried in clay soil. The equilibrium scour depth below the pipeline is estimated as 42% of the pipe diameter for consistency index of 0.17 and is 34% of the pipe diameter for consistency index of 0.23. The results of the present investigations are compared with the results on sandy soil by Cheng and Liu (Appl. Ocean Res., 8(1986) 22) to acknowledge the benefit of cohesive soil in reducing the high pore pressure on buried pipeline compared to cohesionless soil.  相似文献   
316.
The paper takes the Upper Carboniferous Taiyuan shale in eastern uplift of Liaohe depression as an example to qualitatively and quantitatively characterize the transitional (coal-associated coastal swamp) shale reservoir. Focused Ion Beam Scanning Electron Microscope (FIB-SEM), nano-CT, helium pycnometry, high-pressure mercury intrusion and low-pressure gas (N2 & CO2) adsorption for eight shale samples were taken to investigate the pore structures. Four types of pores, i.e., organic matter (OM) pores, interparticle (InterP) pores, intraparticle (IntraP) pores and micro-fractures are identified in the shale reservoir. Among them, intraP pores and micro-fractures are the major pore types. Slit-shaped pores are the major shape in the pore system, and the connectivity of the pore-throat system is interpreted to be moderate, which is subordinate to marine shale. The porosity from three dimension (3D) reconstruction of SEM images is lower than the porosity of helium pycnometry, while the porosity trend of the above two methods is the same. Combination of mercury intrusion and gas absorption reveals that nanometer-scale pores provide the main storage space, accounting for 87.16% of the pore volume and 99.85% of the surface area. Micropores contribute 34.74% of the total pore volume and 74.92% of the total pore surface area; and mesopores account for 48.27% of the total pore volume and 24.93% of the total pore surface area; and macropores contribute 16.99% of the total pore volume and 0.15% of the total pore surface area. Pores with a diameter of less than 10 nm contribute the most to the pore volume and the surface area, accounting for 70.29% and 97.70%, respectively. Based on single factor analysis, clay minerals are positively related to the volume and surface area of micropores, mesopores and macropores, which finally control the free gas in pores and adsorbed gas content on surface area. Unlike marine shale, TOC contributes little to the development of micropores. Brittle minerals inhibit pore development of Taiyuan shale, which proves the influence of clay minerals in the pore system.  相似文献   
317.
The objective of this study was to validate the soil moisture data derived from coarse‐resolution active microwave data (50 km) from the ERS scatterometer. The retrieval technique is based on a change detection method coupled with a data‐based modelling approach to account for seasonal vegetation dynamics. The technique is able to derive information about the soil moisture content corresponding to the degree of saturation of the topmost soil layer (∼5 cm). To estimate profile soil moisture contents down to 100 cm depth from the scatterometer data, a simple two‐layer water balance model is used, which generates a red noise‐like soil moisture spectrum. The retrieval technique had been successfully applied in the Ukraine in a previous study. In this paper, the performance of the model in a semi‐arid Mediterranean environment characterized by low annual precipitation (400 mm), hot dry summers and sandy soils is investigated. To this end, field measurements from the REMEDHUS soil moisture station network in the semi‐arid parts of the Duero Basin (Spain) were used. The results reveal a significant coefficient of determination (R2 = 0·75) for the averaged 0–100 cm soil moisture profile and a root mean square error (RMSE) of 2·2 vol%. The spatial arrangement of the REMEDHUS soil moisture stations also allowed us to study the influence of the small‐scale variability of soil moisture within the ERS scatterometer footprint. The results show that the small‐scale variability in the study area is modest and can be explained in terms of texture fraction distribution in the soil profiles. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
318.
The model proposed in this article relates permeability to porosity measurements that can easily be performed in the laboratory. The pore size distribution (PSD) curve is updated with strains and damage. The updated volumetric fractions of natural pores and cracks are introduced in the expression of permeability. Contrary to classical permeability models based on PSD integrations, the model proposed in this article accounts for possible changes in the porosity modes: one mode for undamaged samples and two modes for cracked samples. The proposed approach also accounts for varying states of damage, as opposed to classical fracture network models, in which the cracks pattern is fixed. The only material parameters that are required to describe the microstructure are the lower and upper bounds of the pores size for both natural pores and cracks. All the other PSD parameters involved in the model are related to macroscopic parameters that can easily be determined in the laboratory, such as the initial void ratio. The framework proposed in this article can be used in any damage constitutive model to determine the permeability of a brittle porous medium. Drained triaxial compression tests have been simulated. Before cracks initiation, permeability decreases while the larger natural pores are getting squeezed. After the occurrence of damage, permeability grows due to the increase of cracks density. The model performs well to represent the influence of the confining pressure on damage evolution and permeability variations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
319.
Shale adsorption and breakthrough pressure are important indicators of shale gas development and key factors in evaluating the reservoir capacities of shales. In this study, geochemical tests, pore-structure tests, methane adsorption tests, and breakthrough-pressure tests were conducted on shales from the Carboniferous Hurleg Formation in eastern Qaidam Basin. The effects of the shale compositions and pore structures on the adsorption and breakthrough pressures were studied, and the reservoir capacities of the shales were evaluated by analyzing the shale adsorptions and sealing effects. The results indicate that the organic carbon content was only one of factors in affecting the adsorption capacity of the shale samples while the effect of the clay minerals was limited. Based on the positive correlation between the adsorption capacity and specific surface area of the shale, the specific surface area of the micropores can be used as an indicator to determine the adsorption capacity of shale. The micro-fracturing of brittle minerals, such as quartz, create a primary path for shale gas breakthrough, whereas the expansion of clay minerals with water greatly increases the breakthrough pressure in the shale samples. Methane adsorption tests showed that maximum methane adsorption for shale samples Z045 and S039 WAS 0.107 and 0.09655 mmol/g, respectively. The breakthrough pressure was 39.36 MPa for sample S039, maintained for 13 days throughout the experiment; however, no breakthrough was observed in sample Z045 when subjected to an injected pressure of 40 MPa for 26 days. This indicates that sample Z045, corresponding to a depth of 846.24 m, exhibited higher adsorption capacity and a better reservoir-sealing effect than sample S039 (498.4 m depth). This study provides useful information for future studies of Qaidam Basin shale gas exploration and development and for evaluation of shale quality.  相似文献   
320.
结合分形理论和自适应图像块划分的遥感图像噪声估计   总被引:1,自引:1,他引:0  
傅鹏  孙权森  纪则轩 《测绘学报》2015,44(11):1235-1245
针对场景复杂的光学遥感图像中加性噪声估计问题,提出了一种结合分形理论和自适应图像块划分的噪声估计方法。区别于传统的基于规则图像块划分的噪声估计方法,本文提出了一种自适应于图像局部信息的图像块划分算法,更大程度地保证了自适应图像块内部的平滑性。结合基于分形理论的图像低粗糙度纹理区域选取和基于统计分析的图像噪声标准差计算,实现了光学遥感图像加性噪声强度的自动估计。利用资源三号卫星图像进行定量试验分析,试验结果表明本文方法可以有效地适用于不同复杂程度、不同噪声强度的光学遥感图像。同时,本文中低粗糙度纹理区域选取和自适应图像块划分的方法经过改进后,还可以应用于雷达图像中乘性噪声的估计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号