The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring.
The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit.
Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption.
Available diamond sampling data were examined and correlated with the geology. Data derive from the old 120 (37 m), 200 (61 m), 300 (92 m) and 1200 ft (366 m) levels, pits sunk during historical mining operations, drill logs, as well as more recent bench mapping. Correlating macro-diamond sample data and geology shows a clear relationship between diamond grade and lithology. Localised enrichment and dilution of the primary diamond grade has taken place in the upper reworked volcaniclastic deposits due to post-eruptive sedimentary in-fill processes. Clear distinction can be drawn between upper (re-sedimented) and lower (pyroclastic) crater deposits at Mwadui, both from a geological and diamond grade perspective.
Finally, an emplacement model for the Mwadui kimberlite is proposed. Geological evidence suggests that little or no sedimentary cover existed at the time of emplacement. The nature of the bedding within the pyroclastic deposits and the continuity of the bedding in the vertical dimension suggest that the eruption was continuous, but that the eruption column may have been heterogeneous, both petrologically as well as geometrically. Volcanic activity appears to have ceased thereafter and the crater was gradually filled with granite debris from the unstable crater walls and re-sedimented volcaniclastic material derived from the tuff ring.
The Mwadui kimberlite exhibits marked similarities compared to the Orapa kimberlite in Botswana. 相似文献
Previous research has shown that the Kaapvaal lithospheric mantle is generally reduced and characterised by a decreasing redox state with increasing depth. As a consequence, C-O-H fluids in the Kaapvaal lithospheric mantle are dominated by H2O, CH4, and C2H6. Thermodynamic calculations demonstrate that diamond precipitation from such a fluid during ascend is possible as it is exposed to a more oxidised environment and both CH4 and C2H6 are oxidised. However, the calculations also demonstrate that the diamond precipitation potential from such a fluid decreases when: (1) the mantle is either more reduced or oxidised compared to the Kaapvaal mantle, or (2) the change in temperature with pressure is smaller compared to that of the Kaapvaal mantle. Therefore, the presence of reduced mantle fluid species and a generally decreasing oxygen fugacity with increasing depth do not necessarily warrant diamond precipitation from a rising reduced fluid. 相似文献
The tectonic setting of British Columbia (BC) differs from classic diamond-bearing intracratonic regions such as the Northwest Territories and South Africa. Nevertheless, several diamond occurrences have been reported in BC. It is also known that parts of the province are underlain by Proterozoic and possibly Archean basement. Because the continents of today are composites of fragments of ancient continents, it is possible that some of the regions underlain by old crystalline basement in eastern British Columbia were associated with a deep crustal keel. The keel may have predated the break-up of the early Neoproterozoic supercontinent called Rodinia and was preserved possibly until the Triassic. Some of these old continental fragments may have been displaced relative to their position of origin and dissociated from their keel, or the keel may have since been destroyed. Such fragments represent favourable exploration grounds in terms of the “Diamondiferous Mantle Root” model (DMR model) if they were intersected by kimberlites or lamproites prior to displacement or destruction of their underlying deep keel. Therefore, extrapolation of fragments of the diamond-bearing Precambrian basement from the Northwest Territories or Alberta to BC provides a sufficient reason for initiating reconnaissance indicator mineral surveys. The “Eclogite Subduction Zone” model (ES model) predicts formation of diamonds at lower pressure (i.e., depth) than required by the DMR model in convergent tectonic settings. Although not proven, this model is supported by thermal modeling of cold subduction zones and recent discoveries of diamonds in areas characterized by convergent tectonic settings. If the ES model is correct, then the parts of BC with a geological history similar to today's “cold” subduction zones, such as Honshu (Japan), or to continental collision zones, such as Kokchetav massif (Kazakhstan) and the Dabie–Sulu Terrane (east central China), may be diamondiferous. The terranes where geological evidences suggest an ultrahigh pressure (UHP) metamorphic event followed by rapid tectonic exhumation (which could have prevented complete resorption of diamonds on their journey to the surface) are worth investigating. If UHP rocks were intercepted at depth by syn- or post-subduction diamond elevators, such as kimberlites, lamproites, lamprophyres, nephelinites or other alkali volcanic rocks of deep-seated origin, the diamond potential of the area would be even higher. 相似文献
The popularity of the work Guns, germs and steel (GGS) has served to bring the question of human–environment connections once again to the forefront of popular thought. We assert that the recent success of GGS represents both a persistence of environmental determinist logic and a contemporary trend that privileges the environment as the primary influence on human–environment relationships. The historical development of the human–environment field is reviewed from the cultural and political ecology (CAPE) perspective, with particular attention to illustrating the varying emphasis between humans and their environment. GGS is situated within this developing field through a critical analysis of the arguments and methods forwarded by Jared Diamond. The book is found to mirror earlier environmental determinism by failing to take into account many of the advances in human–environmental thought since the early twentieth century. Its popular success suggests the pitfalls of failures to acknowledge the complex, intertwined and indivisible relationship that exists among humans and their environment. Furthermore, there is evidence that the environmental determinism espoused in GGS has caught the attention of international development policymakers potentially influencing future outlays of aid and assistance to the developing world. These conclusions raise cautionary flags against repeating past theoretical mistakes by accepting simplistic, causal explanations based largely on a deterministic conception of the natural environment. 相似文献