首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   6篇
  国内免费   10篇
地球物理   3篇
地质学   50篇
综合类   2篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2010年   2篇
  2009年   8篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1995年   1篇
  1990年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
11.
The role of regional extension on the rise and emplacement of granites in the crust is still debated. Pluton ascent and emplacement widely occurred in Tuscany (Italy) since late Miocene during the post-orogenic collapse of the inner Apennines, and are presently occurring in the geothermal areas of Amiata and Larderello. Tuscany offers a preferred test site to study the role of regional extension on pluton ascent and emplacement at different crustal levels. Ductile extension enhanced the segregation and ascent of granitic melts in the lower crust, controlling pluton emplacement in correspondence with the brittle–ductile transition. In the brittle crust, magma ascent occurred through subvertical faults and fractures compatible with the regional extension direction; pluton emplacement mainly occurred by means of roof lifting. The case of Tuscany suggests that the extensional structures enhance melt segregation and ascent in the ductile crust, but are not efficient alone to provide a pathway for the ascent of granitic magmas in the brittle-extending crust. The estimated magmatic strain rates due to pluton emplacement in the geothermal areas are much larger than the regional tectonic strain rates. This suggests that regional tectonics did not control magma emplacement in the brittle crust and explains why nontectonic processes (roof lifting) accommodated the space required for pluton emplacement.  相似文献   
12.
A study of the 933±32-Ma-old Bolangir massif-type anorthosite complex (Eastern Ghats Province, India) yielded strong evidence for anorthosite emplacement during regional shortening, and thereby new insights in massif-type anorthosite formation. Several lines of evidence strongly suggest synchronism of plutonism and regional deformation. First, structures in the country rocks, which imply N–S-directed shortening accompanied by E–W extension, are mirrored by a E–W trending post-magmatic foliation and N–S trending shear zones in the anorthosite complex. Near the intrusion, the foliation in the country rocks becomes parallel to the contact and an internal marginal foliation, and foliation triple points occur in the country rocks. Second, synshortening dikes inside and outside the anorthosite complex are filled with pluton-related melts. Third, ferrodiorites, which are considered late-stage differentiates of the anorthositic pluton, concentrate in tectonic voids at the pluton margin. Some of these occurrences have been affected by the last increments of the regional deformation, but others transect the same structures. Ascent mechanism and significance of the adjacent terrane boundary of the Eastern Ghats Belt for ascent and emplacement of the Bolangir anorthosite complex are discussed. The results of this study imply that emplacement of Proterozoic massif-type anorthosite is not restricted to extensional settings.  相似文献   
13.
Anisotropy of magnetic susceptibility and structural geology of the ca. 1.45 Ga Karlshamn pluton (southern Sweden) are used to study its emplacement and structural evolution. The Karlshamn pluton is one of the largest metaluminous A-type granitoid intrusions in southern Sweden. It is a multiphase body made up of two suites that differ in composition but which have similar crystallization ages. The magmatic foliation, ductile shear zones and granite–pegmatite filled fractures were mapped as well as the metamorphic foliation and extension lineation in the metamorphic host rocks. The anisotropy of magnetic susceptibility was used to map the magnetite petrofabric of the pluton, providing a larger data set for both the magmatic foliations and lineations, which could not be mapped in the field. The fabrics within the pluton are continuous with the metamorphic fabrics in the country rocks. Both the pluton and the country rock fabrics were folded during ENE–WSW compression, while the pluton was still a magma mush. The stress field orientation during cooling of the pluton is determined on the basis of magmatic, ductile and brittle structures in the Karlshamn pluton that formed successively as the pluton cooled. The compressional event is referred to as the Danopolonian orogeny and therefore the Karlshamn granitoids, and other plutons of similar composition and age in central and southern Sweden, on the Danish Island of Bornholm, and in Lithuania, may be considered as syntectonic intrusions and not as anorogenic, as was previously thought.  相似文献   
14.
The A-type Mayurbhanj Granite Pluton (3.09 Ga), occurring along the eastern margin of the Singhbhum-Orissa Craton, eastern India, represents the final phase of acid plutonism in this crustal block of Archean age. The granite shows a bimodal association with a voluminous gabbroid body, exposed mainly along its western margin, and is associated with the Singhbhum Shear zone. The granite pluton is composed mainly of a coarse ferrohastingsite–biotite granite phase, with an early fine-grained granophyric microgranitic phase and a late biotite aplogranitic phase. Petrogenetic models of partial melting, fractional crystallisation and magma mixing have been advocated for the evolution of this pluton. New data, combined with earlier information, suggest that two igneous processes were responsible for the evolution of the Mayurbhanj Granite Pluton: partial melting of the Singhbhum Granite; followed by limited amount of mixing of acid and basic magmas in an anorogenic extensional setting. The necessary heat for partial melting was provided by the voluminous basaltic magma, now represented by the gabbroid body, emplaced at a shallow crustal level and showing a bimodal association with the Mayurbhanj Granite Pluton. The Singhbhum Shear Zone provided a possible channel way for the emplacement of the basic magma during crustal extension. It is concluded that all three phases of the Mayurbhanj Granite Pluton were derived from the same parent magma, generated by batch partial melting of the Singhbhum Granite at relatively high temperatures (980 °C) and low pressures (4 to <2 kbar) under anhydrous conditions. The coarse ferrohastingsite biotite granite phase shows evidence of limited and heterogeneous assimilation of country rock metasediments. However, the early microgranite phase and late aplogranite phase have not assimilated any metasediments. Compositional irregularities observed along the western margin of the Mayurbhanj Granite Pluton in contact with the gabbro body including a continuous fractionating sequence from quartz diorite to alkali-feldspar granite in the Notopahar area. Gradational contacts between the gabbro and the Mayurbhanj Granite Pluton in the Gorumahisani area etc., may be attributed to a limited amount of mixing between the gabbroid magma and the newly generated Mayurbhanj Granite magma. The mixing was mainly of liquid–liquid diffusive type, with a subordinate amount of mixing of solid–liquid type. Although A-type granites are commonly described as having high total REE (e.g. 270–400 ppm), studies on the late aplogranite phase of the Mayurbhanj Granite show that total REE values (100 ppm) are low. This low REE abundance may be attributed to the progressive residual nature of the Singhbhum Granite source during continued partial melting, when the magmas of the microgranite and coarse granite phases had already been removed from the source region.  相似文献   
15.
This paper determines, using simple mathematical models, maps of strain fields and foliation trajectories in the neighbourhood of plutonic bodies intruded into a region before, during, and after a lateral compression. The analyses reveal contrasting features for the three cases, which may be useful in distinguishing pre-, syn-, and post-tectonic plutons in coaxially deformed terranes. The theoretically calibrated strain variation curve, along the regional shortening direction, around a pretectonic, rigid plutonic body shows a zone of strain increase (relative to the far-field strain), whereas that around a syntectonic pluton shows a zone of strain decrease along with a zone of strain increase. The foliations deflect outward from a pretectonic pluton, but they bend towards a syntectonic pluton. The analysis also reveals that syntectonic plutons are likely to be elliptical in plan with axial ratio directly dependent on the ratio of the pluton's stress to the tectonic stress. Tectonic foliations deflect away from post-tectonic plutons. However, the foliated area around a post-tectonic pluton is systematically divided into two sets of zones one characterized by foliations showing compressional features, the other showing extensional features.  相似文献   
16.
17.
为了探讨横贯南极山脉休斯陡崖花岗质岩体的岩石成因,对其开展了岩相学和岩石化学分析。结果表明,休斯陡崖岩体主体岩石为二长花岗岩,后期被细粒二长花岗岩岩脉侵入。二者都具有高硅、富碱和高钾特征,里特曼指数小于3,岩石铝饱和指数(A/CNK)值小于1;微量元素原始地幔标准化分布型式具有Rb、Th、U和K元素富集,Nb、Ta、Nd和Ti等元素亏损特征;稀土元素总量偏低,轻稀土富集。主期二长花岗岩的稀土元素球粒陨石标准化分布型式具有轻微的负Eu异常,而岩脉具有正的Eu异常。休斯陡崖岩体的岩石类型为钙碱性准铝质I型花岗岩,源区为下陆壳,并伴有幔源物质的混入。在源区,岩浆发生了不同程度的斜长石、钛铁矿、金红石和磷灰石的分离结晶作用,其形成的构造环境为与俯冲作用有关的火山岛弧环境。   相似文献   
18.
The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc. The ~354–350 Ma calc-alkaline plutons were emplaced by multiple processes into the upper-crustal Teplá-Barrandian Unit, and their magmatic fabrics recorded increments of regional transpression. Multiple fabrics of the younger, ~346 Ma Blatná pluton recorded both regional transpression and the onset of exhumation of mid-crustal orogenic root (Moldanubian Unit). Continuous exhumation-related deformation during pluton cooling resulted in the development of a wide zone of sub-solidus deformation along the SE margin of the CBPC. Finally, syn-exhumation tabular durbachitic pluton of ultrapotassic composition was emplaced atop the intrusive sequence at ~343–340 Ma, and the ultrapotassic Tábor pluton intruded after exhumation of the orogenic root (~337 Ma). We suggest that the emplacement of plutons during regional transpression in the upper crust produced thermally softened domain which then accommodated the exhumation of the mid-crustal orogenic root, and that the complex nature of the Teplá-Barrandian/Moldanubian boundary is a result of regional transpression in the upper crust, the enhancement of regional deformation in overlapping structural aureoles, the subsequent exhumation of the orogenic root domain, and post-emplacement brittle faulting.  相似文献   
19.
出露于甘肃康县南部阳坝镇一带的阳坝岩体具有典型的岩浆混合特征,岩体中暗色微粒包体发育,主要类型为暗色细粒微粒闪长质及石英闪长质岩浆包体,岩浆包体与寄主岩石界限清晰。岩浆包体具淬火结构:角闪石呈长柱状,黑云母呈长条片状,磷灰石呈针状,包体中出现石英颗粒集合体及发育熔蚀环的斜长石捕虏晶。岩石学、地球化学研究表明,微粒闪长质包体的(La/Yb)N、Rb/Sr值都比寄主岩石高,且铕亏损程度更大,包体和寄主岩石的Mg#高(寄主岩石Mg#=50.8~54.5,暗色包体Mg#=55.6~60.1)。结合岩相学特征可以认为,暗色微粒包体可能是幔源的高温偏基性岩浆侵入到花岗闪长质岩浆中淬火结晶的产物,在此过程中,花岗质岩浆受到幔源物质混染,表明在中三叠世,扬子板块西北缘曾发生壳-幔混合作用。  相似文献   
20.
The ∼340 Ma Knížecí Stolec durbachitic pluton was emplaced as a deep-seated cone-sheet-bearing ring complex into the Křišt’anov granulite body (Moldanubian Unit, Bohemian Massif). Prior to the emplacement of the durbachitic magma, the steep sub-concentric metamorphic foliation in the granulite formed due to intense ductile folding during high-grade retrograde metamorphism. Subsequently, the durbachitic pluton intruded discordantly into the granulite at around ∼340 Ma. The steep margin-parallel magmatic fabric in the durbachitic rocks may have recorded intrusive strain during emplacement. After the emplacement, but prior to the final solidification, the pluton was overprinted by the regional flat-lying fabric under lower pressure–temperature conditions (T = 765 ± 53°C; P = 0.76 ± 0.15 GPa). Based on this study and comparison with other ultrapotassic plutons, we suggest that the flat-lying fabrics, widespread throughout the exhumed lower to middle crust (Moldanubian Unit), exhibit major variations in character, intensity, kinematics, and shape of the fabric ellipsoid. These fabrics may have formed at different structural levels and in different parts of the root prior to ~337 Ma. Therefore, we suggest that this apparently “single” orogenic fabric recorded multiple deformation events and heterogenous finite deformation rather than reflecting a single displacement field within the orogenic root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号