首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   21篇
  国内免费   39篇
测绘学   4篇
大气科学   73篇
地球物理   57篇
地质学   32篇
海洋学   3篇
天文学   641篇
综合类   1篇
自然地理   20篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   18篇
  2014年   9篇
  2013年   25篇
  2012年   5篇
  2011年   53篇
  2010年   55篇
  2009年   75篇
  2008年   64篇
  2007年   62篇
  2006年   77篇
  2005年   58篇
  2004年   55篇
  2003年   49篇
  2002年   36篇
  2001年   19篇
  2000年   16篇
  1999年   20篇
  1998年   18篇
  1997年   1篇
  1996年   14篇
  1995年   10篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1980年   5篇
  1978年   1篇
  1977年   1篇
排序方式: 共有831条查询结果,搜索用时 0 毫秒
91.
The backscattered reflectivity of Jupiter's ring has been previously measured over distinct visible and near infrared wavelength bands by a number of ground-based and spaceborne instruments. We present spectra of Jupiter's main ring from 2.21-2.46 μm taken with the NIRSPEC spectrometer at the W.M. Keck observatory. At these wavelengths, scattered light from Jupiter is minimal due to the strong absorption of methane in the planet's atmosphere. We find an overall flat spectral slope over this wavelength interval, except for a possible red slope shortward of 2.25 μm. We extended the spectral coverage of the ring to shorter wavelengths by adding a narrow-band image at 1.64 μm, and show results from 2.27-μm images over phase angles of 1.2°-11.0°. Our images at 1.64 and 2.27 μm reveal that the halo contribution is stronger at the shorter wavelength, possibly due to the redder spectrum of the ring parent bodies as compared with the halo dust component. We find no variation in main ring reflectivity over the 1.2°-11.0° phase angle range at 2.27 μm. We use adaptive optics imaging at the longer wavelength L′ band (3.4-4.1 μm) to determine a 2-σ upper limit of 22 m of vertically-integrated I/F. Our observing campaign also produced an L′ image of Callisto, showing a darker leading hemisphere, and a spectrum of Amalthea over the 2.2-2.5 and 2.85-3.03 μm ranges, showing deep 3-μm absorption.  相似文献   
92.
There is observational evidence showing that stellar and solar flares occur with a similar circumstance, although the former are usually much more energetic. It is expected that the bombardment by high-energy electrons is one of the chief heating processes of the flaring atmosphere. In this paper we study how a precipitating electron beam can influence the line profiles of Ly α , H α , Ca  ii K and λ 8542. We use a model atmosphere of a dMe star and make non-LTE computations taking into account the non-thermal collisional rates owing to the electron beam. The results show that the four lines can be enhanced to different extents. The relative enhancement increases with increasing formation height of the lines. Varying the energy flux of the electron beam has different effects on the four lines. The wings of Ly α and H α become increasingly broad with the beam flux; change of the Ca  ii K and λ 8542 lines, however, is most significant in the line centre. Varying the electron energy (i.e. the low-energy cut-off for a power-law beam) has a great influence on the Ly α line, but little on the H α and Ca  ii lines. An electron beam of higher energy precipitates deeper, thus producing less enhancement of the Ly α line. The Ly α /H α flux ratio is thus sensitive to the electron energy.  相似文献   
93.
An iterative technique for solving equations of statistical equilibrium   总被引:3,自引:0,他引:3  
Superlevel partitioning is combined with a simple relaxation procedure to construct an iterative technique for solving equations of statistical equilibrium. In treating an N -level model atom, the technique avoids the N 3 scaling in computer time for direct solutions with standard linear equation routines and also does not fail at large N due to the accumulation of round-off errors. As a consequence, the technique allows detailed model atoms with N ≳103 , such as those required for iron peak elements, to be incorporated into diagnostic codes for analysing astronomical spectra. Tests are reported for a 394-level Fe  ii ion and a 1266-level Ni  i – iv atom.  相似文献   
94.
M-star spectra, at wavelengths beyond 1.35 μm, are dominated by water vapour, yet terrestrial water vapour makes it notoriously difficult to obtain accurate measurement from ground-based observations. We have used the short-wavelength spectrometer on the Infrared Space Observatory at four wavelength settings to cover the  2.5–3.0 μm  region for a range of M stars. The observations show a good match with previous ground-based observations and with synthetic spectra based on the Partridge & Schwenke line list, although not with the SCAN line list. We have used a least-squared minimization technique to systematically find best-fitting parameters for the sample of stars. The temperatures that we find indicate a relatively hot temperature scale for M dwarfs. We consider that this could be a consequence of problems with the Partridge & Schwenke line list which leads to synthetic spectra predicting water bands that are too strong for a given temperature. Such problems need to be solved in the next generation of water vapour line lists, which will extend the calculation of water vapour to higher energy levels with the good convergence necessary for reliable modelling of hot water vapour. Then water bands can assume their natural role as the primary tool for the spectroscopic analysis of M stars.  相似文献   
95.
The probability of the detection of Earth-like exoplanets may increase in the near future after the launch of the space missions using the transit photometry as observation method. By using this technique only the semi-major axis of the detected planet can be determined, and there will be no information on the upper limit of its orbital eccentricity. However, the orbital eccentricity is a very important parameter, not only from a dynamical point of view, since it gives also information on the climate and the habitability of the Earth-like planets. In this paper a possible procedure is suggested for confining the eccentricity of an exoplanet discovered by transit photometry if an already known giant planet orbits also in the system.  相似文献   
96.
We have used the spectra obtained by the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft to search for latitudinal variation in the 15N/14N ratio on Jupiter. We found no variations statistically significant given the observational and model uncertainties. The absence of latitudinal variations demonstrates that 15NH3 is not fractionated in Jupiter's atmosphere, and that the measured 15N/14N represents Jupiter's global value. Our mean value for the global jovian 15N/14N ratio of (2.22±0.52)×10−3 agrees with previous measurements made by Fouchet et al. (2000, Icarus 143, 223-243) and Owen et al. (2001, Astrophys. J. 553, L77-L79). We argue that the jovian isotopic 15N/14N ratio must represent the solar nitrogen isotopic composition. The solar 15N/14N ratio hence significantly differs from the terrestrial value: (15N/14N)=3.68×10−3. This supports the proposition that terrestrial nitrogen originates from a nitrogen reservoir isolated from the main nitrogen reservoir in the proto-solar nebula. The origin and carrier of this isolated reservoir are still unknown.  相似文献   
97.
98.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
99.
We present near-infrared (1.24-2.26 μm) images of Saturn's E and G rings which were taken with the W.M. Keck telescope in 1995 August 9-11, during the period that Earth crossed Saturn's ring plane. Our data confirm that the E ring is very blue. Its radial and vertical structure are found to be remarkably similar to that apparent in the HST ringplane crossing data at visible wavelengths, reinforcing models of the ring's peculiar narrow or very steep particle size distribution. Our data show unambiguously that the satellite Tethys is a secondary source of material for the E ring. The G ring is found to be distinctly red, similar in color to Jupiter's main ring, indicative of a (more typical) broad particle size distribution.  相似文献   
100.
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called “type-I migration,” and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (106-107 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 105 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets (“oligarchic growth”) is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号