首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   21篇
  国内免费   37篇
测绘学   4篇
大气科学   71篇
地球物理   53篇
地质学   32篇
海洋学   3篇
天文学   641篇
综合类   1篇
自然地理   20篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   18篇
  2014年   9篇
  2013年   25篇
  2012年   5篇
  2011年   53篇
  2010年   55篇
  2009年   75篇
  2008年   64篇
  2007年   62篇
  2006年   77篇
  2005年   58篇
  2004年   55篇
  2003年   49篇
  2002年   36篇
  2001年   19篇
  2000年   16篇
  1999年   20篇
  1998年   18篇
  1997年   1篇
  1996年   14篇
  1995年   10篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1980年   5篇
  1978年   1篇
  1977年   1篇
排序方式: 共有825条查询结果,搜索用时 31 毫秒
21.
22.
The spatial resolution of image data tends to constrain the horizontal length scale of genetic hypotheses that are addressable by those data. No ‘simple’ formula exists when image resolution is sufficient to test a given geomorphic process, which is dependent on what characteristics are diagnostic of the particular process. Genetic hypotheses should be formulated along the lines of the “multiple working hypotheses” concept as described in a classic paper by Chamberlin [J. Geol. 5 (1897) 837]. An essential element of a viable working hypothesis is a clear indication of the characteristics predicted by, or a consequence of, the hypothesis. An untestable hypothesis is not an effective working hypothesis. The history of the study of lunar sinuous rilles is outlined as an illustration of the influence of image resolution and the formulation of genetic hypotheses on the subsequent advancement of understanding of the problem. Sinuous rilles on Venus and Mars, and controversial sinuous ridges on Mars are also reviewed. In the lunar case, the three-order-of-magnitude improvement in spatial resolution provided by Lunar Orbiter photographs over Earth-based telescopic photographs did not result in definitive examination and elimination of published hypotheses for the formation of sinuous rilles. Topographic data obtained from cartographically controlled Apollo orbital photographs, along with important observations and samples obtained by the astronauts on the lunar surface, did test and exclude several hypotheses. The formulation of a genetic hypothesis, including testable consequences of that hypothesis, is a greater determinant of its ultimate utility to the scientific community than is the image resolution available at any given time.  相似文献   
23.
The geomorphology of planetary calderas   总被引:1,自引:0,他引:1  
Satellite-derived observations of the geomorphology of calderas on Earth, Mars and Venus can be used to learn more about shield volcanoes. Examples of terrestrial basaltic volcanoes from the Galapagos Islands, Hawaii, and the Comoro Islands show how these volcanoes contrast with examples found on Mars and Venus. Caldera structure, degree of infilling, and the location of vents on the flanks are used to interpret each volcano's recent history. The geometry of the caldera floor can be used to infer some of the characteristics of the magma storage system, and the orientation of the deep magma conduits. The formation of benches within the caldera and the effects of the caldera on the distribution of flank eruptions are considered, and it is evident that most calderas on the planets are/were dynamic features. Presently, deep calderas, with evidence of overflowing lavas and ponded lavas high in the caldera wall, show that these calderas were once shallow. Similarly, shallow calderas filled with ponded lavas are evidence that they were once deeper. It is probably a mistake, therefore, to place great significance on caldera depth with regard to the position, shape, or size of subsurface plumbing.  相似文献   
24.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   
25.
We present a numerical check of the collisional resurfacing (CR) hypothesis proposed to explain the observed color diversity within the Kuiper Belt (where surface reddening due to space weathering is counteracted by regular resurfacing of neutral material after mutual collisions). Deterministic simulations are performed in order to estimate the relative spatial distribution of kinetic energy received by collisions, , for a population of target Kuiper Belt objects (KBOs) embedded in a swarm of impactors distributed within the belt. Four different impactor disks have been considered, depending on the excitation and the external limit of the belt and the density of the scattered KBOs (SKBOs) population. The obtained results are compared to the relative color index distribution within the observed Kuiper Belt, in order to derive possible similarities between the high vs low objects spatial distribution in our simulations and the bluer vs redder KBOs distribution in the “real” Kuiper Belt. Such similarities are found for several important features, in particular the general correlations between highly impacted objects and high rms excitation and low perihelion q values that are in good agreement with equivalent correlations found for the bluest objects of the observed belt. Nevertheless, simulations disagree with observations on two crucial points. (1) The plutinos are significantly more collisionally affected than the rest of our test KBO population, whereas there is no observed tendency toward bluer plutinos. (2) There is always a much stronger correlation between and eccentricities than inclinations, whereas observations show just the opposite feature. The presence of numerous SKBO impactors could significantly damp these problematic features, but cannot erase them. Whether these contradictions invalidate the whole CR scenario or not remains yet uncertain, since the physical processes at play are still far from being fully understood and the sample of available observational data is still relatively limited. But it seems nevertheless that the scenario might not hold in its simple present form.  相似文献   
26.
Although methane is the dominant absorber in Titan's reflection spectrum, the amount of methane in the atmosphere has only been determined to an order of magnitude. We analyzed spectra from the Space Telescope Imaging Spectrograph, looking at both a bright surface region (700-km radius) and a dark surface region. The difference between the spectra of the two regions is attributed to light that has scattered off the surface, and therefore made a round-trip through all of Titan's methane. Considering only absorption, the shape of the difference spectrum provides an upper limit on methane abundance of 3.5 km-am. Modeling the multiple scattering in the atmosphere further constrains the methane abundance to 2.63±0.17 km-am. In the absence of supersaturation and with a simplified methane vertical profile, this corresponds to a surface methane-mole fraction near 3.8% and a relative humidity of 0.32. With supersaturation near the tropopause, the surface methane mole fraction could be as low as 3%.  相似文献   
27.
We report the first spectroscopic detection of discrete ammonia ice clouds in the atmosphere of Jupiter, as discovered utilizing the Galileo Near-Infrared Mapping Spectrometer (NIMS). Spectrally identifiable ammonia clouds (SIACs) cover less than 1% of the globe, as measured in complete global imagery obtained in September 1996 during Galileo's second orbit. More than half of the most spectrally prominent SIACs reside within a small latitudinal band, extending from 2° to 7° N latitude, just south of the 5-μm hot spots. The most prominent of these are spatially correlated with nearby 5-μm-bright hot spots lying 1.5°-3.0° of latitude to the north: they reside over a small range of relative longitudes on the eastward side of hot spots, about 37% of the longitudinal distance to the next hot spot to the east. This strong correlation between the positions of hot spots and the most prominent equatorial SIACs suggests that they are linked by a common planetary wave. Good agreement is demonstrated between regions of condensation predicted by the Rossby wave model of A. J. Friedson and G. S. Orton (1999, Bull. Am. Astron. Assoc31, 1155-1156) and the observed longitudinal positions of fresh ammonia clouds relative to 5-μm hot spots. Consistency is also demonstrated between (1) the lifetime of particles as determined by the wave phase speed and cloud width and (2) the sedimentation time for 10-μm radius particles consistent with previously reported ammonia particle size by T. Y. Brooke et al. (1998, Icarus136, 1-13). A young age (<two days) for most SIAC cloud particles is indicated. To the south, the most prominent SIACs are located to the northwest of the Great Red Spot, in a region where a westward flow of jovian air, diverted approximately 10° of latitude northward by the Great Red Spot, encounters a large eastward flow. SIACs have been observed repeatedly by NIMS at this location during Galileo's first four years in Jupiter orbit. It is speculated that due to the three-dimensional interactions of these flows, relatively large amounts of ammonia gas are steadily transported from the sub-cloud troposphere (below the ∼600-mbar level) to the high troposphere, nearly continuously forming fresh ammonia ice clouds to the northwest of the Great Red Spot.  相似文献   
28.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.  相似文献   
29.
Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it is possible on Mars, Venus and Titan. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews the theory, and, where available, measurements, of planetary atmospheric electricity which is taken to include ion production and ion–aerosol interactions. The conditions necessary for a planetary atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification could be important throughout the solar system, particularly at the outer planets which receive little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. Atmospheric electrical processes on Titan, before the arrival of the Huygens probe, are summarised. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. However, Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres.  相似文献   
30.
We present very low-mass stellar models as computed using non-grey model atmospheres for selected assumptions about the stellar metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation, and with similar models that have appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass–luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighbourhood reveals a satisfactory agreement together with the existence of some residual mismatches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号