全文获取类型
收费全文 | 771篇 |
免费 | 21篇 |
国内免费 | 39篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 73篇 |
地球物理 | 57篇 |
地质学 | 32篇 |
海洋学 | 3篇 |
天文学 | 641篇 |
综合类 | 1篇 |
自然地理 | 20篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 11篇 |
2020年 | 9篇 |
2019年 | 7篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 3篇 |
2015年 | 18篇 |
2014年 | 9篇 |
2013年 | 25篇 |
2012年 | 5篇 |
2011年 | 53篇 |
2010年 | 55篇 |
2009年 | 75篇 |
2008年 | 64篇 |
2007年 | 62篇 |
2006年 | 77篇 |
2005年 | 58篇 |
2004年 | 55篇 |
2003年 | 49篇 |
2002年 | 36篇 |
2001年 | 19篇 |
2000年 | 16篇 |
1999年 | 20篇 |
1998年 | 18篇 |
1997年 | 1篇 |
1996年 | 14篇 |
1995年 | 10篇 |
1994年 | 10篇 |
1993年 | 6篇 |
1992年 | 3篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 5篇 |
1978年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有831条查询结果,搜索用时 15 毫秒
131.
Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga). 相似文献
132.
We present several energetic charged particle microsignatures of two Lagrange moons, Telesto and Helene, measured by the MIMI/LEMMS instrument. These small moons absorb charged particles but their effects are usually obscured by Tethys and Dione, the two larger saturnian satellites that occupy the same orbits. The scales and structures of these microsignatures are consistent with standard models for electron absorption from asteroid-sized moons in Saturn's radiation belts. In the context of these observations, we also examine the possibility that the 3 km Satellite Methone is responsible for two electron microsignatures detected by Cassini close to this moon's orbit. We infer that a previously undetected arc of material exists at Methone's orbit (R/2006 S5), we speculate how such a structure could form and what its physical characteristics and location could be. The origin of this arc could be linked to a possible presence of a faint ring produced by micrometeoroid impacts on Methone's surface, to E-ring dust clump formation at that distance or to temporary dust clouds produced by enceladian activity that spiral inwards under the effect of non-gravitational forces. 相似文献
133.
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called “type-I migration,” and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (106-107 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 105 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets (“oligarchic growth”) is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested. 相似文献
134.
James R. Zimbelman 《Geomorphology》2001,37(3-4)
The spatial resolution of image data tends to constrain the horizontal length scale of genetic hypotheses that are addressable by those data. No ‘simple’ formula exists when image resolution is sufficient to test a given geomorphic process, which is dependent on what characteristics are diagnostic of the particular process. Genetic hypotheses should be formulated along the lines of the “multiple working hypotheses” concept as described in a classic paper by Chamberlin [J. Geol. 5 (1897) 837]. An essential element of a viable working hypothesis is a clear indication of the characteristics predicted by, or a consequence of, the hypothesis. An untestable hypothesis is not an effective working hypothesis. The history of the study of lunar sinuous rilles is outlined as an illustration of the influence of image resolution and the formulation of genetic hypotheses on the subsequent advancement of understanding of the problem. Sinuous rilles on Venus and Mars, and controversial sinuous ridges on Mars are also reviewed. In the lunar case, the three-order-of-magnitude improvement in spatial resolution provided by Lunar Orbiter photographs over Earth-based telescopic photographs did not result in definitive examination and elimination of published hypotheses for the formation of sinuous rilles. Topographic data obtained from cartographically controlled Apollo orbital photographs, along with important observations and samples obtained by the astronauts on the lunar surface, did test and exclude several hypotheses. The formulation of a genetic hypothesis, including testable consequences of that hypothesis, is a greater determinant of its ultimate utility to the scientific community than is the image resolution available at any given time. 相似文献
135.
Sedimentation rates of silicate grains in gas giant protoplanets formed by disk instability are calculated for protoplanetary masses between 1 MSaturn to 10 MJupiter. Giant protoplanets with masses of 5 MJupiter or larger are found to be too hot for grain sedimentation to form a silicate core. Smaller protoplanets are cold enough to allow grain settling and core formation. Grain sedimentation and core formation occur in the low mass protoplanets because of their slow contraction rate and low internal temperature. It is predicted that massive giant planets will not have cores, while smaller planets will have small rocky cores whose masses depend on the planetary mass, the amount of solids within the body, and the disk environment. The protoplanets are found to be too hot to allow the existence of icy grains, and therefore the cores are predicted not to contain any ices. It is suggested that the atmospheres of low mass giant planets are depleted in refractory elements compared with the atmospheres of more massive planets. These predictions provide a test of the disk instability model of gas giant planet formation. The core masses of Jupiter and Saturn were found to be ∼0.25 M⊕ and ∼0.5 M⊕, respectively. The core masses of Jupiter and Saturn can be substantially larger if planetesimal accretion is included. The final core mass will depend on planetesimal size, the time at which planetesimals are formed, and the size distribution of the material added to the protoplanet. Jupiter's core mass can vary from 2 to 12 M⊕. Saturn's core mass is found to be ∼8 M⊕. 相似文献
136.
R.H. Brown K.H. Baines J.-P. Bibring F. Capaccioni R.N. Clark D.P. Cruikshank V. Formisano Y. Langevin T.B. McCord V. Mennella P.D. Nicholson C. Sotin M.A. Chamberlain G. Hansen M. Showalter 《Icarus》2003,164(2):461-470
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle. 相似文献
137.
Jason W. Barnes Robert H. Brown Christophe Sotin Sebastien Rodriguez Ross A. Beyer Karly Pitman Roger Clark 《Icarus》2008,195(1):400-414
Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-μm-bright, and dark blue spectral units. Our observations show that an enigmatic “dark red” spectral unit seen in T5 in fact represents a macroscopic mixture with 5-μm-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10° from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes. 相似文献
138.
作者再次改进了引潮位展开,潮波振幅给到小数后第六位,共3070个潮波.文中论述了引潮位展开的精度,同时给出为了保证潮汐计算的高精度而所需引入的各项改正及其说明. 相似文献
139.
Images of the dusty rings obtained by the Cassini spacecraft in late 2006 and early 2007 reveal unusual structures composed of alternating canted bright and dark streaks in the outer G ring (∼170,000 km from Saturn center), the inner Roche Division (∼138,000 km) and the middle D ring (70,000-73,000 km). The morphology, locations and pattern speeds of these features indicate that they are generated by Lindblad resonances. The structure in the G ring appears to be generated by the 8:7 Inner Lindblad Resonance with Mimas. Based in part on the morphology of the G ring structure, we develop a phenomenological model of Lindblad-resonance-induced structures in faint rings, where the observed variations in the rings' optical depth and brightness are due to alignments and trends in the particles' orbital parameters with semi-major axis. To reproduce the canted character of these structures, this model requires a term in the equations of motion that damps eccentricities. Using this model to interpret the structures in the D ring and Roche Division, we find that the D-ring patterns mimic those predicted at 2:1 Inner Lindblad Resonances and the Roche Division patterns look like those expected at 3:4 Outer Lindblad Resonances. As in the G ring, the effective eccentricity-damping timescale is of order 10-100 days, suggesting that free eccentricities are strongly damped by some mechanism that operates throughout all these regions. However, unlike in the G ring, perturbation forces with multiple periods are required to explain the observed patterns in the D ring and Roche Division. The strongest perturbation periods occur at 10.53, 10.56 and 10.74 hours (only detectable in the D ring) and 10.82 hours (detectable in both the D ring and Roche division). These periods are comparable to the rotation periods of Saturn's atmosphere and magnetosphere. The inferred strength of the perturbation forces required to produce these patterns (and the absence of evidence for other resonances driven by these periods in the main rings) suggests that non-gravitational forces are responsible for generating these features in the D ring and Roche Division. If this interpretation is correct, then some of these structures may have some connection with periodic signals observed in Saturn's magnetic field and radio-wave emissions, and accordingly could help clarify the nature and origin(s) of these magnetospheric asymmetries. 相似文献
140.
J. Raitala 《Earth, Moon, and Planets》1996,74(3):191-214
The intrablock deformation of Meshkenet Tessera on Venus is mostly due to responses of the uppermost surface bedrock to tensional stresses. It is found that complex deformation structures within the highland blocks resemble those of formed in chocolate tablet boudinaging which has taken place after original parallel faulting and bar-like crustal block formation. The high-angle tessera structures with varying cross-cutting relations define styles and locations of multiphase deformation most evidently related to local relaxation of tessera topography. Series of progressive or superposed fracturing events with alternating fault directions took place at high angles during this relaxational deformation. Compressional ridges often surround these tesserae. 相似文献