首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   15篇
  国内免费   41篇
测绘学   1篇
地球物理   25篇
地质学   117篇
海洋学   2篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
101.
因缺乏高精度年代学制约,尼雄地区“敌布错组”形成时代及地层归属存在争议。本次工作通过对“敌布错组”安山岩夹层进行锆石U- Pb测年,获得~120 Ma的加权平均年龄,结合该区“敌布错组”碎屑锆石研究成果,表明其形成于早白垩世中晚期(130~120 Ma),与区域上则弄群火山- 沉积地层形成时代一致,建议将其新厘定为则弄群。根据安山岩样品的全岩地球化学及锆石原位Hf同位素组成,认为其是壳源长英质岩浆与幔源玄武质岩浆混合的产物,形成于洋壳俯冲的构造环境。通过进一步对拉萨地体中、新生代岩浆作用的时空变换规律的总结分析,本文研究认为该套安山岩形成的动力学机制主要与新特提斯洋北向俯冲相关。  相似文献   
102.
《International Geology Review》2012,54(10):1179-1190
Andesite magmatism plays a major role in continental crustal growth, but its subduction-zone origin and evolution is still a hotly debated topic. Compared with whole-rock analyses, melt inclusions (MIs) can provide important direct information on the processes of magma evolution. In this article, we synthesize data for melt inclusions hosted by phenocrysts in andesites, extracted from the GEOROC global compilation. These data show that melt inclusions entrapped by different phenocrysts have distinct compositions: olivine-hosted melt inclusions have basalt and basaltic andesite compositions, whereas melt inclusions in clinopyroxene and othopyroxene are mainly dacitic to rhyolitic. Hornblende-hosted melt inclusions have rhyolite composition. The compositions of melt inclusions entrapped by plagioclase are scattered, spanning from andesite to rhyolite. On the basis of the compositional data, we propose a mixing model for the genesis of the andesite, and a two-chamber mechanism to account for the evolution of the andesite. First, andesite melt is generated in the lower chamber by mixing of a basaltic melt derived from the mantle and emplaced in the lower crust with a felsic melt resulting from partial melting of crustal rocks. Olivine and minor plagioclase likely crystallize in the lower magma chamber. Secondly, the andesite melt ascends into the upper chamber where other phenocrysts crystallize. According to SiO2-MgO diagrams of the MIs, evolution of the andesite in the upper chamber can be subdivided into two distinct stages. The early stage (I) is characterized by a phenocrystal assemblage of clinopyroxene + othopyroxene + plagioclase, whereas the late stage (II) is dominated by crystallization of plagioclase + hornblende.  相似文献   
103.
Ar-Ar ages, and petrographical and geochemical characteristics of pyroclastics and an overlying lava from Teshima Island, southwest Japan are presented. Although previous geological and age data suggested Teshima pyroclastics were products of magmatism > 3 my prior to lava flows of Setouchi volcanic rocks generated in association with southward migration of the southwest Japan arc sliver during opening of the Sea of Japan backarc basin at ~ 15 Ma, the present results led to the conclusion that a sequence of Setouchi volcanism, induced by slab melting and subsequent melt-mantle reactions, produced both pyroclastics and lava at 14.6–14.8 Ma. This age is oldest among those reported so far and may represent the timing of onset of characteristic Setouchi magmatism immediately posterior to and hence as a result of the mega-tectonic event including rotation of the southwest Japan arc sliver.  相似文献   
104.
Many Late Paleozoic Cu–Au–Mo deposits occur in the Central Asian Orogenic Belt (CAOB). However, their tectonic settings and associated geodynamic processes have been disputed. This study provides age, petrologic and geochemical data for andesites and granitic porphyries of the Taerbieke gold deposit from the Tulasu Basin, in the northwestern Tianshan Orogenic Belt (western China). LA-ICP-MS zircon U–Pb dating indicates that the granitic porphyries have an Early Carboniferous crystallization age (349 ± 2 Ma) that is broadly contemporaneous with the eruption age (347 ± 2 Ma) of the andesites. The andesites have a restricted range of SiO2 (58.94–63.85 wt.%) contents, but relatively high Al2O3 (15.39–16.65 wt.%) and MgO (2.51–6.59 wt.%) contents, coupled with high Mg# (57–69) values. Geochemically, they are comparable to Cenozoic sanukites in the Setouchi Volcanic Belt, SW Japan. Compared with the andesites, the granitic porphyries have relatively high SiO2 (72.68–75.32 wt.%) contents, but lower Al2O3 (12.94–13.84 wt.%) and MgO (0.10–0.33 wt.%) contents, coupled with lower Mg# (9–21) values. The andesites and granitic porphyries are enriched in both large ion lithophile and light rare earth elements, but depleted in high field strength elements, similar to those of typical arc magmatic rocks. They also have similar Nd–Hf–Pb isotope compositions: εNd(t) (+0.48 to +4.06 and −0.27 to +2.97) and zircons εHf(t) (+3.4 to +8.0 and −1.7 to +8.2) values and high (206Pb/204Pb)i (18.066–18.158 and 17.998–18.055). We suggest that the Taerbieke high-Mg andesitic magmas were generated by the interaction between mantle wedge peridotites and subducted oceanic sediment-derived melts with minor basaltic oceanic crust-derived melts, and that the magmas then fractionated to produce the more felsic members (i.e., the Taerbieke granitic porphyries) during late-stage evolution. Taking into account the Carboniferous magmatic record from the western Tianshan Orogenic Belt, we suggest that the formation of the Early Carboniferous andesites and granitic porphyries in the Taerbieke area were related to the Paleo-Junggar Oceanic plate southward subduction under the Yili–Central Tianshan plate. The close association of the Early Carboniferous magmatic rocks and Au mineralization in the Taerbieke area suggests that the arc magmatic rocks in the Tulasu basin may have a high potential for Au mineralization.  相似文献   
105.
The chronology and glass composition of 43 andesitic tephra layers in palaeolake sediments in northern New Zealand provide the basis for a fine‐resolution tephrostratigraphy of the interval 10–70 cal. ka. Their ages are constrained by 14 interbedded, (mostly) well‐dated rhyolitic tephra layers. The andesitic tephra have the potential to subdivide time intervals (1–5 kyr) bracketed by well known rhyolitic layers, including periods of rapid climate change such as the last glacial–interglacial transition and the Younger Dryas. The source of the distal andesitic tephra is identified as Egmont volcano (some 270 km S‐SW) on the basis of glass shard composition. The tephra contain high‐K2O (3–6 wt%) andesitic‐dacitic (SiO2 = 60–73 wt%) glass, with commonly heterogeneous shard populations (2–10 wt% SiO2). Within stratigraphic intervals of < 10 kyr, individual tephra layers can be distinguished on the basis of their SiO2 and K2O contents, and variability in these contents can also be a distinguishing characteristic. The tephra record greatly extends the dated pyroclastic and geochemical record of Egmont volcano, and demonstrates that the volcano has frequently produced widely dispersed tephra over the last 70 kyr at a generally constant rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
106.
107.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   
108.
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800–1,000°C and variable H2O contents. At water undersaturated conditions and fO2 established around QFM, garnet has a wide stability field. At 1.2 GPa garnet + amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents ≤9 wt% at 950°C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe–Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy for ‘slab melting’, or dehydration melting in the deep arc. Garnet fractionation, either in the deep crust via formation of garnet gabbros, or in the upper mantle via formation of garnet pyroxenites remains an important alternative, despite the rare occurrence of magmatic garnet in volcanic rocks.  相似文献   
109.
Calc-alkaline intermediate rocks are spatially and temporally associated with high-Mg andesites (HMAs, Mg#>60) in Middle Miocene Setouchi volcanic belt. The calc-alkaline rocks are characterized by higher Mg# (strongly calc-alkaline trend) than ordinary calc-alkaline rocks at equivalent silica contents. Phenocrysts in the intermediate rocks have petrographical features such as: (1) coexisting reversely and normally zoned orthopyroxene phenocrysts in single rock; (2) sieve type plagioclase in which cores are mantled by higher An%, melt inclusion-rich zone; and (3) reversely zoned amphibole phenocrysts with opacite cores. In addition, mingling textures and magmatic inclusions were observed in some rocks. These petrographic features and the mineral chemistry indicate that magma mixing was the most important process in producing the strongly calc-alkaline rocks. The core composition of normally zoned orthopyroxene phenocrysts and the mantle composition of reversely zoned orthopyroxene phenocrysts have relatively high Mg# (85–90) in maximum. Although basaltic and high-Mg andesitic magmas are candidate as possible mafic end-member magmas, basaltic magma is excluded in terms of phenocryst assemblage and bulk composition. HMA magmas are suitable mafic end-member magmas that precipitated high Mg# (90) orthopyroxene, whereas andesitic to dacitic magma are suitable felsic end-members. In contrast, it is difficult to produce the strongly calc-alkaline trend through fractional crystallization from a HMA magma, because it would require removal of plagioclase together with mafic minerals from the early stage of crystallization, whereas the precipitation of plagiolase is suppressed due to the high water content of HMA magmas. These results imply that Archean Mg#-rich TTGs (>45–55), which are an analog of the strongly calc-alkaline rocks in terms of chemistry and magma genesis, can be derived from magma mixing in which a HMA magma is the mafic end-member magma, rather than by fractional crystallization from a HMA magma.  相似文献   
110.
The Athesian Volcanic District (AVD), a thick sequence of andesitic to rhyolitic lava and ignimbrite, overlies both the Variscan basement of the Dolomites and, where present, the continental basal conglomerate of Upper Carboniferous(?) to Early Permian age. This volcanic activity is known to mark the margin of the intra-Pangea megashear system between Gondwana and Laurasia, the onset age of which is determined in this study.SHRIMP U-Pb dating on zircon from Ponte Gardena/Waidbruck (Isarco/Eisack valley) basaltic andesite yields an age of 290.7 ± 3 Ma, providing the oldest record of andesite volcanic activity yet documented in the AVD. Two younger dates (279.9 ± 3.3 and 278.6 ± 3.1 Ma) obtained for the andesitic necks of M. dei Ginepri (Eores/Aferer valley) and Col Quaternà (western Comelico), respectively, probably represent a second pulse of andesite magmatic activity.Near Chiusa/Klausen, the volcanoclastic deposits at the bottom of the Funes/Villnöss valley volcano-sedimentary complex only contain detrital zircons, dated at 469 ± 6 Ma; these probably derive from erosion of Paleozoic porphyroids. Other zircons from the same sediments and inherited cores of magmatic andesite crystals give Paleoproterozoic (1953.6 ± 22.1, 1834.6 ± 69.3, 1773.6 ± 25.1 Ma), Early Neoproterozoic (1015 ± 14 Ma) and Late Neoproterozoic (728.4 ± 9.6, 687.6 ± 7.6 Ma) ages. These ancient detrital and inherited zircon ages fit the model that envisages the Dolomite region as being tectonically coherent with Africa, at least until the Lower Permian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号