首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   51篇
  国内免费   58篇
测绘学   14篇
大气科学   25篇
地球物理   164篇
地质学   522篇
海洋学   117篇
天文学   4篇
综合类   3篇
自然地理   219篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   16篇
  2019年   32篇
  2018年   16篇
  2017年   38篇
  2016年   32篇
  2015年   29篇
  2014年   47篇
  2013年   167篇
  2012年   20篇
  2011年   28篇
  2010年   29篇
  2009年   49篇
  2008年   79篇
  2007年   61篇
  2006年   42篇
  2005年   36篇
  2004年   45篇
  2003年   33篇
  2002年   21篇
  2001年   23篇
  2000年   31篇
  1999年   24篇
  1998年   27篇
  1997年   17篇
  1996年   8篇
  1995年   8篇
  1994年   11篇
  1993年   7篇
  1992年   12篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   10篇
  1987年   2篇
  1986年   4篇
  1985年   12篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   1篇
排序方式: 共有1068条查询结果,搜索用时 15 毫秒
61.
依亚瓦拉半封闭澙湖是澳大利亚西南侧最著名的海岸澙湖,是全新世海侵以来残留的濒危脆弱地貌。湖面约35km2,流域面积达270km2,长期沉积速率不足1mm/a,短期沉积速率约5~6mm/a。近几十年来,由于受陆源泥沙淤积和工矿重金属污染,澙湖正处于快速退化阶段。当局采取以疏为主的多项整治措施,隔绝陆沙入湖、浚深湖底、加固湖岸、杜绝圈湖养殖、扩宽潮道,缩短了海、湖水交换的时间,目前已变成湖水清澈、鱼虾洄游的旅游圣地。该整治经验可为我国海岸澙湖研究提供借鉴。  相似文献   
62.
The Australian coast contains 10,685 beaches which occupy 49% of the 30,000 km coast and average 1.37 km in length. Their relatively short length is largely due to the presence of bedrock, calcarenite and laterite, which form boundaries to many of the beaches, as well as occurring as rocks, reefs and islands along and off the beaches. This geological inheritance plays a major role in Australian beach systems — determining their length and through wave refraction and attenuation influencing beach location, shape, type, morphodynamics and circulation, which in turn influence sediment transport and the backing dune and barrier systems. This paper uses a database covering every Australian beach to review the role of headlands, rocks and reefs on Australian beaches. Major effects are the short average beach length; reduction in breaker height resulting in lower energy beach types; wave refraction resulting in increased beach curvature; the presence of topographic rips on moderate and higher energy beaches and megarips during high wave conditions; and the interruption of and/or trapping of longshore sand transport leading to beach rotation.  相似文献   
63.
Stakeholder consultation is being adopted as standard practice in the planning and management of natural resource management programs. While the utility of stakeholder participation has been investigated for the evaluation and implementation phases of natural resource management programs, few studies have examined the utility of stakeholder consultation during the initial phases of developing such programs. This paper presents a case study from a project developing a marine and coastal monitoring program for the Pilbara and Kimberley region of northern Western Australia. Via a series of workshops held in the region, stakeholders were asked to prioritise future research needs using several voting procedures. During the analyses of the results from the different voting procedures, it became apparent that there were high levels of inconsistency, poor correlation, and contradiction, between participants’ responses. Despite the rigour of the selection process used to identify ‘suitable’ stakeholders for the workshops, these results show that stakeholders did not have the technical or broader contextual knowledge about marine ecosystems to effectively and objectively contribute to the research prioritisation and planning process. Based on the outcomes of this study, we argue that project designers need to be clear about why they are involving stakeholders in a project, particularly in light of the costs involved (financial, time, resources, costs to the stakeholder) in stakeholder consultation. Stakeholder involvement may be appropriate in later stages of developing natural resource management programs (implementation and management), however, stakeholder involvement is not appropriate in the initial phases of such programs, where scientific expertise is essential in formulating scientific concepts and frameworks.  相似文献   
64.
The evolution of the Australian plate can be interpreted in a plate‐tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent‐continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly supra‐subduction environment. Widespread plume‐driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea).  相似文献   
65.
Views on the origin of sandplains in Western Australia remain controversial with debate focusing around three different models of formation. These are in situ, aeolian and in situ formation with local remobilisation by wind or colluvial transport. The only recent work on the subject to date espouses a dominantly aeolian origin. New work from a detailed study on the Victoria Plateau is described and demonstrates the applicability of utilising a range of evidence in understanding the origin of sandplains in Western Australia. Field investigations show a strong association of sandplain with sandstone and an absence of sand on non‐arenaceous geology in similar and adjacent topographic settings. Grainsize, mineral magnetic analysis and heavy‐mineral spectra show the Victoria Plateau to be a heterogeneous body of sand. These findings coupled with a lack of internal sedimentary structures are not consistent with an aeolian origin for the sandplain. Furthermore, scanning electron microscopy, grainsize and heavy minerals also demonstrate a clear link between bedrock and overlying sandplain. These data support the hypothesis that Western Australian sandplains are mostly the product of in situ weathering. Such findings question whether the origin of sandplains can be satisfactorily deduced without such a range of data.  相似文献   
66.
This paper provides an incisive review of paleoclimate science and its relevance to natural-resource management within the Murray-Darling Basin (MDB). The drought of 1997–2010 focussed scientific, public and media attention on intrinsic climate variability and the confounding effect of human activity, especially in terms of water-resource management. Many policy and research reviews make statements about future planning with little consideration of climate change and without useful actionable knowledge. In order to understand future climate changes, modellers need, and demand, better paleoclimate data to constrain their model projections. Here, we present an insight into a number of existing long-term paleoclimate studies relevant to the MDB. Past records of climate, in response to orbital forcing (glacial–interglacial cycles) are found within, and immediately outside, the MDB. High-resolution temperature records, spanning the last 105 years, exist from floodplains and cave speleothems, as well as evidence from lakes and their associated lunettes. More recently, historical climate records show major changes in relation to El Niño–Southern Oscillation cycles and decadal shifts in rainfall regimes. A considerable body of research currently exists on the past climates of southeastern Australia but, this has not been collated and validated over large spatial scales. It is clear that a number of knowledge gaps still exist, and there is a pressing need for the establishment of new paleoclimatic research within the MDB catchment and within adjacent, sensitive catchments if past climate science is to fulfil its potential to provide policy-relevant information to natural-resource management into the future.  相似文献   
67.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   
68.
The well-known southwest-to-northeast younging of stratigraphy over a present-day cross strike distance of >1500 km in the southern Tasmanides of eastern Australia has been used to argue for models of accretionary orogenesis behind a continually eastwards-rolling paleo-Pacific plate. However, these accretionary models need modification, since the oldest (ca 530 Ma) outcrops of Cambrian supra-subduction zone rocks occur in the outboard New England Orogen, now ~900 km east of the next oldest (520–510 Ma) supra-subduction zone rocks. This is not consistent with simple, continuous easterly rollback. Instead, the southern Tasmanides contain an early history characterised by a westwards-migrating margin between ca 530 and ca 520 Ma, followed by rapid eastwards rollback of the paleo-Pacific plate from 520 to 502 Ma that opened a vast backarc basin ~2000 km across that has never been closed. From the Ordovician through to the end of the Carboniferous, the almost vertical stacking of continental margin arcs (within a hundred kilometres of each other) in the New England Orogen indicates a constant west-dipping plate boundary in a Gondwana reference frame. Although the actual position of the boundary is inferred to have undergone contraction-related advances and extension-related retreats, these movements are estimated to be ~250 km or less. Rollback in the early Permian was never completely reversed, so that late Permian–Triassic to Cretaceous arcs lie farther east, in the very eastern part of eastern Australia, with rifted fragments occurring in the Lord Howe Rise and in New Zealand. The northern Tasmanides are even more anomalous, since they missed out on the middle Cambrian plate boundary retreat seen in the south. As a result, their Cambrian-to-Devonian history is concentrated in a ~300 km wide strip immediately west of Precambrian cratonic Australia and above Precambrian basement. The presence in this narrow region of Ordovician to Carboniferous continental margin arcs and backarc basins also implies a virtually stationary plate boundary in a Gondwana frame of reference. This bipolar character of the Tasmanides suggests the presence of a segmented paleo-Pacific Plate, with major transform faults propagating into the Tasmanides as tear faults that were favourably oriented for the formation of local supra-subduction zone systems and for subsequent intraplate north–south shortening. In this interpretation of the Tasmanides, Lower–Middle Ordovician quartz-rich turbidites accumulated as submarine fan sequences, and do not represent multiple subduction complexes developed above subduction zones lying behind the plate boundary. Indeed, the Tasmanides are characterised by the general absence of material accreted from the paleo-Pacific plate and by the dominance of craton-derived, recycled sedimentary rocks.  相似文献   
69.
Sediment at the sediment‐water interface of natural and man‐made waterways forms an integral part of the ecosystem because it is affected by a continuous flux of physical, chemical and biological components between the sediment, interstitial water and the overlying water column. Aquatic sediments contain records of past and present urban and rural runoff, chemical discharges and spills. In recent years sediment quality has received increasing attention following identification of the role of sediment as both a sink for pollutants and as a contaminant source with potential impacts on the quality of receiving waters. Research has indicated that the processes leading to remobilization of contaminated sediments in upstream reaches of a waterway may, through time, exert a significant influence on water quality in the downstream reaches. This, together with the cumulative effects due to contaminant input from point and non‐point source discharges, have dramatic effects on water quality and thus on ecosystem structure and functioning.

The problems associated with elevated concentrations of many hazardous organic and inorganic compounds have resulted in the establishment of aquatic sediment quality criteria and management guidelines in many overseas countries, with the objectives being the reduction and elimination of adverse environmental effects and human health risks associated with contaminated sediments. Whereas more than 70% of the Australian population is clustered around the coastal waterways, little is known about the role of sediments as a repository of environmental pollutants and/or as a source of adverse impacts on water quality and the health of our rivers. The paucity of knowledge on the quality of aquatic sediment highlights the need for the development of coherent guidelines for sediment quality assessment and management of contaminated sites, which are consistent with Australian environmental conditions and land use features.

A comparative evaluation of sediment quality information from eight coastal rivers along the east coast of Australia, presented in this paper, indicates the possibility for establishing a framework for regional sediment quality assessment. This may be achievable by using textural and compositional attributes of bottom sediments in depositional areas to develop databases on the loading and concentration trends of nutrients and contaminants. Regional variability in sediment quality determinants are shown to reflect the influence of catchment hydrology, lithology and land use on nutrient and contaminant concentration trends. Locally, the loading and partitioning behaviour of sediment‐bound contaminants is largely controlled by the nature and the extent of interactions occurring at the sediment‐water interface within individual depositional units.

The concept of ‘Sediment Effect Zone’ is introduced to provide a compartmental approach to the characterization of aquatic sediments and depositional environments in different hydrologic zones. This approach offers a rational basis for follow‐up chemical and biological assessments to establish sediment quality standards and management guidelines. Because of the complex influences of environmental, methodological and statistical factors on defining the sediment variability, the need for implementing proper quality control measures from early stages of design of a sediment quality assessment program is highlighted.  相似文献   
70.
An ensemble of stochastic daily rainfall projections has been generated for 30 stations across south‐eastern Australia using the downscaling nonhomogeneous hidden Markov model, which was driven by atmospheric predictors from four climate models for three IPCC emissions scenarios (A1B, A2, and B1) and for two periods (2046–2065 and 2081–2100). The results indicate that the annual rainfall is projected to decrease for both periods for all scenarios and climate models, with the exception of a few scenarios of no statistically significant changes. However, there is a seasonal difference: two downscaled GCMs consistently project a decline of summer rainfall, and two an increase. In contrast, all four downscaled GCMs show a decrease of winter rainfall. Because winter rainfall accounts for two‐thirds of the annual rainfall and produces the majority of streamflow for this region, this decrease in winter rainfall would cause additional water availability concerns in the southern Murray–Darling basin, given that water shortage is already a critical problem in the region. In addition, the annual maximum daily rainfall is projected to intensify in the future, particularly by the end of the 21st century; the maximum length of consecutive dry days is projected to increase, and correspondingly, the maximum length of consecutive wet days is projected to decrease. These changes in daily sequencing, combined with fewer events of reduced amount, could lead to drier catchment soil profiles and further reduce runoff potential and, hence, also have streamflow and water availability implications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号