首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   3篇
  国内免费   8篇
测绘学   1篇
大气科学   2篇
地球物理   6篇
地质学   22篇
海洋学   5篇
天文学   48篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有90条查询结果,搜索用时 109 毫秒
81.
The behavior of a river plume in Suo-Nada, Japan, has been studied using a primitive equation numerical model, the Princeton Ocean Model. Special attention has been paid to the current structure and behavior of the anticyclonic eddy (bulge) induced by high freshwater inflow changing on a timescale of one week. First, the freshwater is supplied from a river to a rectangular basin with a simple topography. When the river discharge subsides after reaching its peak value, the bulge propagates upstream (i.e., opposite to the direction of the Kelvin wave propagation). Next, the freshwater is supplied from eight major rivers to the basin with realistic topography. The less saline water mass in the southern part of Suo-Nada propagates to the west (i.e., upstream) after the river discharge subsides. This is consistent with an observed phenomenon, viz., that the less saline water mass appears in the western part of Suo-Nada, suggesting that the upstream propagation of the bulge is possible in the real ocean. Finally, the cause of the upstream propagation is considered. Onshore currents appear in the bottom layer beneath the bulge, propagating upstream. They produce an anticyclonic barotropic eddy due to the conservation of potential vorticity. The current component associated with the eddy crosses normally to the isohaline in the upper layer, and therefore transports the bulge upstream. No other current component (such as surface current velocity minus vertically-averaged value) is responsible for the upstream propagation of the bulge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
82.
IEEE—488接口总线,是计算机与外部设备、仪器连接的通用标准并行接口,它要求被连接的仪器具有EEEE—488标准的接口。本文讨论,如何把它与非IEEE—488标准的仪器接口相连接。 首先,要研究非标准的仪器接口,找出它与IEEE—488标准的异同。必要时,应改焊此仪器的接口插头线端,使那些主要信号线功能与IEEE—488要求一致的线端处于与IEEE—488插口线端对应的位置,而功能不相容者不用。然后,试运行IEEE—488接口卡上EPROM中已有程序。必要时,应把三线联络方式改为西线、一线或零钱联络,并根据卡上I/O芯片功能自编连接子程序。这对所用IEEE—488接口卡的功能是一种扩充。 本文具体介绍了用此方法如何将TCH—瞬态仪与APPLEⅡIEEE—488接口卡连接,构成一个较强功能的高速瞬态信号采集与处理系统。  相似文献   
83.
Based on the beam system model used by Chater, Hutchinson and Neale (1982), the recovery behavior of propagating buckle on elastic structures is first found out from the computational results. As the representative of some elastic structures, the Chater-Hutchinson-Neale model indicates that once the buckle meets arresters, unlike the case in submarine pipelines, it will be reflected back to continue its propagation in a negative phase or a negative direction. The pressure which maintains the negative propagation, however, is as same as that required for the positive propagation. This fact has been examined in the experiment of the bulge propagation on a long elastic latex tube. The present discovery greatly supports the hypothesis that the buckle propagation coresponds to the coexisting phase of structures.  相似文献   
84.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   
85.
86.
平原水库防渗膜下气胀现象产生机制现场试验研究   总被引:1,自引:0,他引:1  
对库盘铺膜平原水库的气胀现象产生机制进行了理论探讨和现场试验研究。分析指出围坝填筑、库水位快速下降及地下水位上升等因素是导致膜下产生气胀的主要原因。在德州大屯水库进行了现场试验,模拟了不同膜上荷重、不同地下水位上升幅度和速率等试验工况,对膜下地层不同埋深处孔隙压力和膜下气胀现象进行了观测,分析了各因素对膜下气胀变化规律影响。试验结果表明,地下水位快速上升能够引起膜下气胀压力加大,地下水位上升幅度影响膜下气胀压力的大小;不同地下水位上升速率对膜下气场影响较小,在膜上设置一定荷载可较好地防止膜顶托或胀破。  相似文献   
87.
解算了2001~2005年新疆周边发生的3次大震产生的库仑应力变化,同时结合其后3年内库仑应力正负区域5级以上地震活动特征,并引用GPS资料综合分析了这组周边大震活动对新疆境内地震趋势的影响。研究结果表明,新疆周边这组大震活动一定程度上减缓了新疆境内中强地震的孕震过程。  相似文献   
88.
确定深基坑隆起破坏面的优化方法   总被引:1,自引:0,他引:1  
采用有限元程序求得深基坑支护结构和土体开挖前后的应力状态以及土体任一点处的极限状态函数值;运用人工参与的优化方法选择坑底最大可能隆起破坏的起点与终点以及潜在隆起破裂面的形状和位置,并计算相应的安全系数。计算表明,潜在破裂面终点的位置对围护桩插入比不敏感.而潜在破裂面起点位置随围护桩入土深度的增加而逐渐靠近围护桩。工程实例证实了组合优化算法对潜在破裂面确定的有效性和实用性。  相似文献   
89.
90.
为了弄清塔里木盆地温宿凸起构造演化、油源条件及圈闭类型等关键地质问题,通过石油地质条件综合分析,结合样品测试分析,查清了温宿地区油气成藏的关键因素,提出了石油地质条件新认识。结果表明: 温宿凸起为一个继承性发育的古隆起,构造演化主要经历了4个发展阶段; 温宿凸起油气藏类型以构造-岩性型为主; 温宿凸起不发育烃源岩,但发育沟通拜城富烃凹陷的高效输导体系; 温宿凸起新近系吉迪克组油气藏类型以构造-岩性型为主; 油气的生成、运移、聚集主要发生在新近纪—第四纪,具有明显的晚期复式成藏特点; 优越的盖层条件是温宿吉迪克组油气藏形成的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号