首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   163篇
  国内免费   600篇
大气科学   9篇
地球物理   162篇
地质学   1881篇
海洋学   89篇
天文学   6篇
综合类   39篇
自然地理   72篇
  2024年   17篇
  2023年   54篇
  2022年   42篇
  2021年   71篇
  2020年   101篇
  2019年   108篇
  2018年   113篇
  2017年   118篇
  2016年   103篇
  2015年   87篇
  2014年   89篇
  2013年   102篇
  2012年   189篇
  2011年   75篇
  2010年   84篇
  2009年   88篇
  2008年   96篇
  2007年   94篇
  2006年   86篇
  2005年   69篇
  2004年   68篇
  2003年   67篇
  2002年   46篇
  2001年   43篇
  2000年   53篇
  1999年   31篇
  1998年   29篇
  1997年   42篇
  1996年   16篇
  1995年   18篇
  1994年   15篇
  1993年   13篇
  1992年   11篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
排序方式: 共有2258条查询结果,搜索用时 171 毫秒
71.
The O'okiep Copper District is underlain by voluminous 1035–1210Ma granite gneiss and granite with remnants of metamorphosedsupracrustal rocks. This assemblage was intruded by the 1030Ma copper-bearing Koperberg Suite that includes jotunite, anorthosite,biotite diorite and hypersthene-bearing rocks ranging from leuconoriteto hypersthenite. New sensitive high-resolution ion microprobeage data demonstrate the presence of 1700–2000 Ma zirconas xenocrysts in all of the intrusive rocks, and as detritalzircon in the metasediments of the Khurisberg Subgroup. Thesedata are consistent with published Sm–Nd model ages ofc. 1700 Ma (TCHUR) and c. 2000 Ma (TDM) of many of the intrusivesthat support a major crust-forming event in Eburnian (Hudsonian)times. In addition, U–Th–Pb analyses of zirconsfrom all major rock units define two tectono-magmatic episodesof the Namaquan Orogeny: (1) the O'okiepian Episode (1180–1210Ma), represented by regional granite plutonism, notably theNababeep and Modderfontein Granite Gneisses and the Concordiaand Kweekfontein Granites that accompanied and outlasted (e.g.Kweekfontein Granite) regional tectonism [F2(D2)] and granulite-faciesmetamorphism (M2); (2) the Klondikean Episode (1020–1040Ma), which includes the intrusion of the porphyritic RietbergGranite and of the Koperberg Suite that are devoid of regionalplanar or linear fabrics. Klondikean tectonism (D3) is reflectedby major east–west-trending open folds [F3(D3a)], andby localized east–west-trending near-vertical ductilefolds [‘steep structures’; F4(D3b)] whose formationwas broadly coeval with the intrusion of the Koperberg Suite.A regional, largely thermal, amphibolite- to granulite-faciesmetamorphism (M3) accompanied D3. This study demonstrates, interalia, that the complete spectrum of rock-types of the KoperbergSuite, together with the Rietberg Granite, was intruded in ashort time-interval (<10 Myr) at c. 1030 Ma, and that therewere lengthy periods of about 150 Myr of tectonic quiescencewithin the Namaquan Orogeny: (1) between the O'okiepian andKlondikean Episodes; (2) from the end of the latter to the formalend of Namaquan Orogenesis 800–850 Ma ago. KEY WORDS: U–Pb, zircon; O'okiep, Namaqualand; granite plutonism; granulite facies; Koperberg Suite; Namaquan (Grenville) Orogeny  相似文献   
72.
Sensitive high-resolution ion microprobe U–Pb dating showsthat a biotite orthogneiss from the Hercynian belt of westerncentral Iberia contains 1000–300 Ma zircon. Older, 1000–570Ma ages within this range represent inherited, detrital materialamong which four age components may be recognized:  相似文献   
73.
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years.  相似文献   
74.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
75.
Fulai Liu  Zhiqin Xu  Huaimin Xue 《Lithos》2004,78(4):411-429
Orthogneisses are the major country rocks hosting eclogites in the Sulu UHP terrane, eastern China. All of the analyzed orthogneiss cores from the main drilling hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) have similar major and trace element compositions and a granite protolith. These rocks have relatively high LREE/HREE ratios, strong negative Eu anomalies (Eu/Eu*=0.20–0.39), and negative Ba anomalies (Ba/Ba*=0.25–0.64). Coesite and coesite-bearing UHP mineral assemblages are common inclusions in zircons separated from orthogneiss, paragneiss, amphibolite, and (retrograded) eclogite of the CCSD-MH. This suggests that the eclogite, together with its country rocks, experienced in situ ultrahigh-pressure (UHP) metamorphism. Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircons from the orthogneisses are zoned and that they have distinct mineral inclusions in the different zones. Most zircons retain early magmatic cores with abundant low-pressure mineral inclusions, which are mantled with metamorphic zircon-containing inclusions of coesite and other UHP minerals. The outermost rims on these grains contain low-pressure mineral inclusions, such as quartz and albite. SHRIMP U–Pb dating of the zoned zircons gives three discrete and meaningful groups of ages: Proterozoic ages for the protolith, 227±2 Ma for the coesite-bearing mantles, and 209±3 Ma for the amphibolite facies retrograde rims. The widespread occurrence of UHP mineral inclusions in zircons from the Sulu metamorphic belt dated at about 227 Ma suggests that voluminous continental crust experienced late Triassic subduction to depths of at least 120 km and perhaps more than 200 km. Eighteen million years later, the terrane was rapidly exhumed to midcrustal levels, and the UHP rocks were overprinted by amphibolite facies metamorphism. The exhumation rate deduced from the zircon age data and previously obtained metamorphic PT data is estimated to be 5.6–11.0 km/Ma. Such rapid exhumation of the Sulu UHP terrane may be due to the buoyancy forces produced by subduction of low-density continental material into the deep mantle.  相似文献   
76.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   
77.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   
78.
Pb pollution has existed for several millennia and remains relevant today. By using peat cores as environmental archives it is possible to reconstruct this long history on a regional scale. This is a significant contribution to the findings from ice core records, the only other archive recording purely atmospheric additions. Without information that allows linking and comparison between sites regionally, within Europe and elsewhere, our ability to make coherent global models of the natural Pb cycle, and anthropogenic forcing of this cycle, is limited. In this respect, the characteristics of the Pb pre-pollution aerosol (PPA) are important to define globally. We characterize for the first time a PPA in Southern Europe with [Pb] = 0.78 ± 0.86 μg g− 1, net Pb accumulation rates of 0.032 ± 0.030 mg m− 2 y− 1 and a 206Pb / 207Pb signature of 1.25470 ± 0.02575. This PPA Pb isotope signature is more radiogenic than that found thus far in Western and Northern Europe. Spain is a historically important mining site. Using three-isotope plots and a pool of potential Pb isotope signatures, a detailed source appointment of both natural and anthropogenic Pb sources was made. We found evidence of Saharan aridification and its termination ∼4400 BP and/or agricultural signals and strong local control (from rock and soil) of the Pb PPA. Human impact is first recorded at 3210 BP but does not exceed 50% of deposited Pb until 3005 BP. Mines in SE Spain dominate early Pb pollution history at this site. During the rise of Roman rule, contributions come from mines in N, NW and SW Spain with no strong indication of other European mining activities. In Medieval and Industrial times local contributions to the peat bog are reduced.  相似文献   
79.
东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年   总被引:15,自引:6,他引:15       下载免费PDF全文
对东北四海龙湾玛珥湖SHLF6孔纹层沉积物的137Cs放射性测量表明:137Cs比活度的最大值出现在55cm处,对应于1963年世界原子弹试爆高峰期。纹层计年表明0~6cm共有35个纹层层偶。从75cm到65cm,137Cs比活度从256±009dpm/g急剧增加到1868±017dpm/g,可能65cm对应于1954年。通过测量226Ra子核214Pb214Bi(能量为295keV,352keV和609keV)放射的光子数获得226Ra比活度数据,然后求得过剩210Pb比活度(210Pbuns)。210Pbuns比活度随深度增加而呈指数衰减,其异常波动可能与人类活动以及沉积速率变化有关,例如55cm处210Pb比活度较高,与137Cs的峰值对应,这可能与1963年前后人工核实验的高峰有关,因为核试验不仅产生137Cs,而且可以产生208Pb210Pb;45cm处210Pb比活度较低,而226Ra较高,可能与人类活动加剧,导致沉积速率增加有关。根据210PbunsCRS模式,SHLF6孔0~19cm的平均沉积速率为20mg/cm2·a,或约为011cm/a。210Pb测年数据与137Cs时标及纹层计年均有很好的一致性。四海龙湾玛珥湖发育的纹层为年纹层,可以建立高分辨率时间序列。  相似文献   
80.
长江口沉积物210Pb分布及沉积环境解释   总被引:19,自引:0,他引:19  
在长江河口潮滩、分流河道和水下三角洲共获得18个柱样,进行沉积学分析和210Pb测定,并对其中6根柱样进行137Cs测定。经研究发现,长江口外在水深25~30m,122°30′N,31°00′E附近存在一个泥质沉积中心,沉积速率达2.0~6.3cm/yr。另外,在潮滩和涨潮槽也获得较高沉积速率,其中南汇和横沙岛潮滩沉积速率(1.03~1.94cm/yr)高于崇明东滩(0.51~0.76cm/yr),涨潮槽沉积速率也达0.86cm/yr。此外,在石洞口、南汇、九段沙潮滩和三角洲前缘有部分柱样未获沉积速率,推测为沉积环境不稳定或沉积速率过快所致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号