首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3081篇
  免费   182篇
  国内免费   379篇
测绘学   33篇
大气科学   86篇
地球物理   363篇
地质学   869篇
海洋学   634篇
天文学   1421篇
综合类   60篇
自然地理   176篇
  2024年   14篇
  2023年   34篇
  2022年   47篇
  2021年   58篇
  2020年   60篇
  2019年   80篇
  2018年   56篇
  2017年   67篇
  2016年   69篇
  2015年   84篇
  2014年   94篇
  2013年   88篇
  2012年   82篇
  2011年   123篇
  2010年   101篇
  2009年   248篇
  2008年   232篇
  2007年   246篇
  2006年   257篇
  2005年   190篇
  2004年   209篇
  2003年   172篇
  2002年   159篇
  2001年   146篇
  2000年   143篇
  1999年   133篇
  1998年   136篇
  1997年   42篇
  1996年   41篇
  1995年   38篇
  1994年   35篇
  1993年   16篇
  1992年   10篇
  1991年   13篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   19篇
  1984年   15篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1978年   2篇
排序方式: 共有3642条查询结果,搜索用时 500 毫秒
261.
We study the effect of contamination by interlopers in kinematic samples of galaxy clusters. We demonstrate that without the proper removal of interlopers the inferred parameters of the mass distribution in the cluster are strongly biased towards higher mass and lower concentration. The interlopers are removed using two procedures previously shown to work most efficiently on simulated data. One is based on using the virial mass estimator and calculating the maximum velocity available to cluster members and the other relies on the ratio of the virial and projected mass estimators. We illustrate the performance of the methods in detail using the example of A576, a cluster with a strong uniform background contamination, and compare the case of A576 to 15 other clusters with different degree of contamination. We model the velocity dispersion and kurtosis profiles obtained for the cleaned data samples of these clusters solving the Jeans equations to estimate the mass, concentration and anisotropy parameter. We present the mass–concentration relation for the total sample of 22 clusters.  相似文献   
262.
We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1–5 μm Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-μm photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope ( HST ) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent 'twist' in the outflow axis. We model the CSE using an axisymmetric light scattering ( als ) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport ( dart ) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1–0.4 μm with a power-law size distribution of a −3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1 i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ∼4500 L and the mass of the CSE is ∼0.2 M. We also determine that the mass loss lasted for ∼5300 yr with a mass-loss rate of ∼3.4 × 10−5 M yr−1.  相似文献   
263.
264.
265.
Based on results from cold dark matter N -body simulations, we develop a dynamical model for the evolution of subhaloes within group-sized host haloes. Only subhaloes more massive than 5 × 108 M are considered, because they are massive enough to possibly host luminous galaxies. On their orbits within a growing host potential the subhaloes are subject to tidal stripping and dynamical friction. At the present time  ( z = 0)  , all model hosts have equal mass  ( M vir= 3.9 × 1013 M)  but different concentrations associated with different formation times. We investigate the variation of subhalo (or satellite galaxy) velocity dispersion with host concentration and/or formation time. In agreement with the Jeans equation, the velocity dispersion of subhaloes increases with the host concentration. Between concentrations of ∼5 and ∼20, the subhalo velocity dispersions increase by a factor of ∼1.25. By applying a simplified tidal disruption criterion, that is, rejection of all subhaloes with a tidal truncation radius below 3  kpc at   z = 0  , the central velocity dispersion of the 'surviving' subhalo sample increases substantially for all concentrations. The enhanced central velocity dispersions in the surviving subhalo samples are caused by a lack of slow tangential motions. Additionally, we present a fitting formula for the anisotropy parameter which does not depend on concentration if the group-centric distances are scaled by r s, the characteristic radius of the Navarro, Frenk & White profile. Since the expected loss of subhaloes and galaxies due to tidal disruption increases the velocity dispersion of surviving galaxies, the observed galaxy velocity dispersion can substantially overestimate the virial mass.  相似文献   
266.
267.
268.
269.
We assume the four dimensional induced matter of the 5D Ricci flat bouncing cosmological solution contains a perfect fluid. The big bounce singularity of simple 5D cosmological model is studied with the cosmological term Λ=α ρ and Λ=β H 2 where α and β are constants and ρ and H are respectively energy density and Hubble parameter. This big bounce singularity is found to be an event horizon at which the scale factor and mass density of the universe are finite, while the pressure is infinite.   相似文献   
270.
We present models in which the photoevaporation of discs around young stars by an external ultraviolet source (as computed by Adams et al.) is coupled with the internal viscous evolution of the discs. These models are applied to the case of the Orion Nebula Cluster (ONC), where the presence of a strong ultraviolet field from the central OB stars, together with a detailed census of circumstellar discs and photoevaporative flows, is well established. In particular we investigate the constraints that are placed on the initial disc properties in the ONC by the twin requirement that most stars possess a disc on a scale of a few astronomical unit (au), but that only a minority (<20 per cent) are resolved by Hubble Space Telescope ( HST ) at a scale of 50 au. We find that these requirements place very weak constraints on the initial radius distribution of circumstellar discs: the resulting size distribution readily forgets the initial radius distribution, owing to the strong positive dependence of the photoevaporation rate on disc radius. Instead, the scarcity of large discs reflects the relative scarcity of initially massive discs (with mass  >0.1 M  ). The ubiquity of discs on a small scale, on the other hand, mainly constrains the time-span over which the discs have been exposed to the ultraviolet field (<2 Myr). We argue that the discs that are resolved by HST represent a population of discs in which self-gravity was important at the time that the dominant central OB star switched on, but that, according to our models, self-gravity is unlikely to be important in these discs at the present time. We discuss the implications of our results for the so-called proplyd lifetime problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号