首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3120篇
  免费   188篇
  国内免费   402篇
测绘学   34篇
大气科学   86篇
地球物理   365篇
地质学   914篇
海洋学   653篇
天文学   1422篇
综合类   60篇
自然地理   176篇
  2024年   17篇
  2023年   50篇
  2022年   53篇
  2021年   67篇
  2020年   66篇
  2019年   85篇
  2018年   59篇
  2017年   69篇
  2016年   73篇
  2015年   85篇
  2014年   94篇
  2013年   89篇
  2012年   85篇
  2011年   124篇
  2010年   105篇
  2009年   251篇
  2008年   232篇
  2007年   246篇
  2006年   257篇
  2005年   191篇
  2004年   209篇
  2003年   172篇
  2002年   159篇
  2001年   146篇
  2000年   143篇
  1999年   133篇
  1998年   136篇
  1997年   42篇
  1996年   41篇
  1995年   38篇
  1994年   35篇
  1993年   16篇
  1992年   10篇
  1991年   13篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   19篇
  1984年   15篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1978年   2篇
排序方式: 共有3710条查询结果,搜索用时 15 毫秒
231.
We produce mock angular catalogues from simulations with different initial power spectra to test methods that recover measures of clustering in three dimensions, such as the power spectrum, variance and higher order cumulants. We find that the statistical properties derived from the angular mock catalogues are in good agreement with the intrinsic clustering in the simulations. In particular, we concentrate on the detailed predictions for the shape of the power spectrum, P ( k ). We find that there is good evidence for a break in the galaxy P ( k ) at scales in the range 0.02< k <0.06 h Mpc−1, using an inversion technique applied to the angular correlation function measured from the APM Galaxy Survey. For variants on the standard cold dark matter (CDM) model, a fit at the location of the break implies Ω h =0.45±0.10, where Ω is the ratio of the total matter density to the critical density, and Hubble's constant is parametrized as H 0=100 h km s−1 Mpc−1. On slightly smaller, though still quasi-linear scales, there is a feature in the APM power spectrum where the local slope changes appreciably, with the best match to CDM models obtained for Ω h ≃0.2. Hence the location and narrowness of the break in the APM power spectrum combined with the rapid change in its slope on quasi-linear scales cannot be matched by any variant of CDM, including models that have a non-zero cosmological constant or a tilt to the slope of the primordial P ( k ). These results are independent of the overall normalization of the CDM models or any simple bias that exists betwen the galaxy and mass distributions.  相似文献   
232.
We re-examine the Fall & Efstathiou scenario for galaxy formation, including the dark halo gravitational reaction to the formation of the baryon disc, as well as continuous variations in the intrinsic halo density profile. The recently published rotation curves of low surface brightness (LSB) and dwarf galaxies together with previously known scaling relations provide sufficient information on the present-day structure of late-type disc galaxies to invert the problem. By requiring that the models reproduce all the observational restrictions we can fully constrain the initial conditions of galaxy formation, with a minimum of assumptions, in particular without the need to specify a cold dark matter (CDM) halo profile. This allows one to solve for all the initial conditions, in terms of the halo density profile, the baryon fraction and the total angular momentum. We find that a unique initial halo shape is sufficient to accurately reproduce the rotation curves of both LSB and normal late-type spiral galaxies. This unique halo profile differs substantially from that found in standard CDM models. A galactic baryon fraction of 0.065 is found. The initial value of the dimensionless angular momentum is seen to be the principal discriminator between the galaxy classes we examine. The present-day scalings between structural parameters are seen to originate in the initial conditions.  相似文献   
233.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   
234.
235.
We investigate the sampling and dipole convergence properties of flux-limited samples of mock X-ray clusters in relation to their underlying 'parent' cluster distribution. To this purpose, we resort to numerical simulations of the cluster distribution and extract samples resembling the main observational features of X-ray selected cluster samples. The flux-limited samples, being quite sparse, underestimate the amplitude of the 'parent' cluster dipole by ≈ 15 per cent on average for Local Group-like observers. However, the general shapes of their dipole amplitude profiles are in relatively good agreement. We also calculate the expected contribution of clusters, selected according to the relevant criteria, to the soft (i.e. 0.1–2.4 keV) extragalactic X-ray background (XRB), using the ESO Key Project X-ray luminosity function, assuming a flat universe with vanishing cosmological constant. We obtain a value of about 10 per cent of the observed XRB flux.  相似文献   
236.
ISOPHOT has been used to perform high-resolution 60-μm scans of Vega, and these have been compared with those from γDra, to obtain a Gaussian width of 22±2 arcsec. The dust disc around Vega has been mapped, resolving it at 60 and 90 μm with ISOPHOT. At 90 μm a Gaussian width of 36±3 arsec has been derived. In addition, multi-filter photometry is presented, at 25, 60, 80, 100, 120, 150, 170 and 200 μm. The data are fitted by a modified blackbody with a temperature of 73 K [ Q (λ)∝1/λ1.1]. The dust disc has a luminosity L IR/ L *∼3×10−5. Using a distance of 7.8 pc, 22 arcsec corresponds to a distance of 86 au, and 36 arcsec to a distance of 140 au.  相似文献   
237.
238.
Galaxies can be classified in two broad sequences which are likely to reflect their formation mechanism. The 'main sequence', consisting of spirals, irregulars and all dwarf galaxies, is probably produced by gas settling within dark matter haloes. We show that the sizes and surface densities along this sequence are primarily determined by the distributions of the angular momentum and formation time of dark haloes. They are well reproduced by current cosmogonies provided that galaxies form late, at z  ≲ 2. In this scenario, dwarf ellipticals were small 'discs' at z  ∼ 1 and become 'ellipticals' after they fall into cluster environments. The strong clustering of dwarf ellipticals is then a natural by-product of the merging and transformation process. The number of dwarf galaxies predicted in a cluster such as Virgo is in good agreement with the observed number. On the other hand, the 'giant branch', consisting of giant ellipticals and bulges, is probably produced by the merging of disc galaxies. Based on the observed phase-space densities of galaxies, we show that the main bodies of all giant ellipticals can be produced by dissipationless mergers of high-redshift discs. However, high-redshift discs, although denser than present-day ones, are still not compact enough to produce the high central phase-space density of some low-luminosity ellipticals. Dissipation must have occurred in the central parts of these galaxies during the merger which formed them.  相似文献   
239.
240.
We present a comparison between the peculiar velocity fields measured from a recently completed l -band Tully–Fisher survey of field spirals (SFI) and that derived from the IRAS 1.2-Jy redshift survey galaxy distribution. The analysis is based on the expansion of these data in redshift space using smooth orthonormal functions, and is performed using low- and high-resolution expansions, with an effective smoothing scale which increases almost linearly with redshift. The effective smoothing scales at 3000 km s−1 are 1500 and 1000 km s−1 for the low- and high-resolution filters. The agreement between the high- and low-resolution SFI velocity maps is excellent. The general features in the filtered SFI and IRAS velocity fields agree remarkably well within 6000 km s−1. This good agreement between the fields allows us to determine the parameter β = Ω0.6 / b , where Ω is the cosmological density parameter, and b is the linear biasing factor. From a likelihood analysis on the SFI and IRAS modes we find that β = 0.6 ± 0.1, independently of the resolution of the modal expansion. For this value of β, the residual fields for the two filters show no systematic variations within 6000 km s−1. Most remarkable is the lack of any coherent, redshift-dependent dipole flow in the residual field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号