首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   51篇
  国内免费   19篇
地球物理   78篇
地质学   133篇
海洋学   1篇
综合类   4篇
自然地理   3篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   13篇
  2008年   9篇
  2007年   4篇
  2006年   25篇
  2005年   8篇
  2004年   7篇
  2003年   22篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
151.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   

152.
We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U–Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170±8 Ma (95% confidence). An 40Ar/39Ar amphibole date from the same sample yields a similar apparent age of about 2124±30 Ma (2σ), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355°, Inc.=65°, k=145, α95=5°) with a paleomagnetic pole at 84°N, 215°E (δm=6°, δp=7°). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed separation of the Wyoming Craton and Laurentia prior to about 1.8 Ga. Correcting the quartz diorite pole for the possible effects of Laramide-age tilting of the Wind River Range, based on the attitude of nearby overlying Cambrian Flathead Sandstone (dip=20°, N20°E), gives a tilt corrected pole of 75°N, 58°E (δm=4°, δp=6°), which is also discordant with respect to time-equivalent poles from the Superior Province. Reconstruction of the Superior and Wyoming Province using a rotation similar to that proposed by Roscoe and Card [Can. J. Earth Sci. 46(1993)2475] is problematic, but reconstruction of the Superior and Wyoming Provinces based on restoring them to their correct paleolatitude and orientation using a closest approach fit indicates that the two cratons could have been adjacent at about 2.17 Ga prior to rifting at about 2.15 Ga. The paleomagnetic data presented are consistent with the hypothesis that the Huronian and Snowy Pass Supergroups could have evolved as part of a single epicratonic sedimentary basin during the Early Proterozoic.  相似文献   
153.
The transitional virtual geomagnetic poles (VGPs) of the five most detailed records lie within the longitudinal bands of America, western Europe and eastern Asia. This distribution does not support the hypothesis of a direct link with heterogeneities of the lower mantle underneath Americas and eastern Asia. A similar distribution of VGPs persists by adding less detailed records and show similarities with the distribution of maximum inclination anomalies predicted by time-averaged field models. However, the two databases are far too limited to infer any recurrence of non-dipole components during reversals. Clusters of VGPs are observed in most records at various geographical locations without preference for specific longitudes, which most likely result from intense volcanism during short time periods rather than from transitional dipolar states.  相似文献   
154.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   
155.
 Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16 000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33±0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32±0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities. Received: 13 January 1997 / Accepted: 7 May 1997  相似文献   
156.
We may use tectonic structures to confirm the primary age of a paleomagnetic remanence component but only if we know how to undo the natural strain history. It is normally insufficient to untilt fold limbs, as in the original version of Graham's Fold Test. One may need to remove also the bulk or local strain and account for strain heterogeneities, achieved by grain-strain and the more elusive intergranular flow. Most important, one must know the sequence of strains and tilts that occurred through geological history because the order of these noncommutative events critically affects the final orientation of the remanence component.In many non-metamorphic rocks, strain-rotation of a remanence component approximates a simple formula, although the actual rotation mechanism is complex. This simple, passive line approximation is confirmed experimentally for strains up to 45% oblate shortening. The passive line hypothesis has permitted successful paleomagnetic restorations in several natural case studies.Experimental deformation of samples with multicomponent remanences shows that differential stresses above a threshold value near 25 MPa selectively remove components with coercivities <25mT, due to domain wall rearrangements in large multidomain magnetite grains. Higher coercivity components are less reduced so that the net remanence vector spins always toward the high-coercivity component, at rates and along paths not predicted by any structural geological formula. Experimentally deformed samples with very fine hematite in the matrix showed their net remanence spinning away from the high coercivity component. This is due to easier mechanical disorientation of the very fine hematite grains, scattering their magnetic moments more and reducing their contribution to the overall remanence. Thus, muticomponent remanences have their components selected for survival based on rock-magnetic and microstructural criteria. Such stress-rotation by coercivity selection does not depend on the orientations of the principal stresses or strains, a concept that is counterintuitive to conventional structural geology.Syn-tectonic remagnetization is common in deformed sedimentary sequences and laboratory experiments reveal that a only moderate differential stress remagnetization is required to add components parallel to the ambient field, without significant strain. Alternating field demagnetization isolates components smeared along the great circle between the initial remanence direction and the remagnetizing field direction. In this case, the principal directions of the stress and finite strain tensors are irrelevant; remagnetization is triggered by a threshold differential stress. The final remanence direction is controlled by the ambient field direction and the remagnetization path lies along a great circle between the ambient field and the initial remanence direction.  相似文献   
157.
酒西盆地南缘晚古生代以来发育的典型冲断—褶皱推覆体隶属于北祁连构造带,自泥盆纪开始,它就拚接于华北板块边缘,成为其一部分,它所经历的构造变迁史是与华北板块紧密相连的,但与塔里木板块却是在二叠纪以后才联合到一起,联合部位在阿尔金断裂带。在伴随华北板块主体一同北向“漂移”的运动中,经历了3次较强烈运动阶段:(1)泥盆纪~石炭纪期间;(2)二叠纪~三叠纪期间;(3)第三纪~第四纪。并有过两个运动和缓时期:石炭纪~二叠纪期间和三叠纪~白垩纪。 推覆体多期推覆作用的发生对酒西盆地基底形态、范围、沉积物类型、有机质演化条件等均具有明显控制作用,进而给油气赋存亦带来极大影响。  相似文献   
158.
Paleomagnetic study of specimens from four lamprophyric dykes on the Kukri Hills, Taylor Valley (77.64°S, 163.35°E) has yielded a primary mean direction of magnetization ofD=222.6 andI=+0.6 with 95=10.9° after AF cleaning. The magnetization of five other dykes and of the amphibolitic basement was either unstable or not fully reliable.The corresponding pole position lies at 9.3°S and 26.7°E and confirms the previous results from Lower Ordovician rocks from distant areas of East Antarctica.A Lower Ordovician mean pole position recalculated from valid data lies at 17°S, 21°E.  相似文献   
159.
Résumé On propose un mode de calcul des directions principales d'un ensemble de directions non orientées et des tests de précision. On propose des applications à l'analyse de nuages de pôles et à la recherche d'intersection de cercles de réaimantation.
Statistical analysis of non-orientated directions. A computing mode of principal directions of a set of non-orientated directions or lineations and statistical tests are presented. An application to the analysis of a set of poles and for finding the intersection of remagnetisation circles is shown.
  相似文献   
160.
The Basque Arc constitutes the northern segment of the Basque-Cantabrian basin, in the western part of the Pyrenees. The main goal of the present study was to find out by means of paleomagnetic analysis if the arched shape of the Basque Arc has a primary origin, due to the development of sedimentary basins related to the opening of the Bay of Biscay or a secondary origin due to rotations about vertical axes. Nine volcanic flows of late Albian to Santonian age (100–83.5 My) were sampled together with 10 sedimentary sites (marls, limestones, calcarenites and sandstones) of lower Jurassic to early Eocene age in order to carry out paleomagnetic and rock-magnetic experiments, 15 paleodirections being obtained. In order to analyse these results together with data from previous studies, the studied area was subdivided into a western, a central and an eastern sector. While inclinations of all three sectors show a similar value, declinations differ. The western sector displays a 37 ± 16° clockwise rotation of its mean paleodeclination, the central sector is not rotated (4 ± 9°) and both sedimentary sites which make up the eastern sector show counter-clockwise rotations (−25 ± 11° and −68 ± 9°). These results suggest that the shape of the Basque Arc does not have a primary origin, but a secondary origin due to rotations about vertical axes as a result of differential shortening related to post-Lutetian compressive tectonics which resulted in the formation of the Pyrenees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号