首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   47篇
  国内免费   193篇
地球物理   50篇
地质学   697篇
海洋学   28篇
综合类   7篇
自然地理   13篇
  2024年   9篇
  2023年   11篇
  2022年   16篇
  2021年   19篇
  2020年   23篇
  2019年   23篇
  2018年   37篇
  2017年   28篇
  2016年   23篇
  2015年   28篇
  2014年   29篇
  2013年   52篇
  2012年   52篇
  2011年   37篇
  2010年   24篇
  2009年   42篇
  2008年   36篇
  2007年   32篇
  2006年   28篇
  2005年   38篇
  2004年   32篇
  2003年   29篇
  2002年   20篇
  2001年   16篇
  2000年   19篇
  1999年   19篇
  1998年   17篇
  1997年   19篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1978年   1篇
排序方式: 共有795条查询结果,搜索用时 0 毫秒
71.
ABSTRACT

This paper presents geochronological, geochemical, and zircon Hf–O isotope data for late Mesozoic intrusive rocks from the northeastern North China Craton (NCC), with the aim of constraining the late Mesozoic tectonic nature of the NE Asian continental margin. U–Pb zircon data indicate that the Late Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Jurassic (161 ? 156 Ma) and Early Cretaceous (125 ? 120 Ma). Late Jurassic magmatism consists mainly of monzogranites. These monzogranites display high Sr/Y ratios and the tetrad effect in their REE, respectively, and have negative εHf(t) values (?22.6 to ?15.8). The former indicates that the primary magma was generated by partial melting of thickened NCC lower crust, the latter suggests that the monzogranites were crystallized from highly fractionated magma, with the primary magma derived from partial melting of lower continental crust. Combined with the spatial distribution and rock associations of the Late Jurassic granitoids, we conclude that the Late Jurassic magmatism in the eastern NCC formed in a compressional environment related to oblique subduction of the Paleo-Pacific Plate beneath the Eurasia. The Early Cretaceous magmatism consists mainly of granitoids and quartz diorites. The quartz diorites formed by mixing of melts derived from the mantle and lower crust. The coeval granitoids are classified as high-K calc-alkaline and metaluminous to weakly peraluminous series. Some of the granitoids are similar to A-type granites. The granitoid εHf(t) values and TDM2 range from ?14.3 to ?1.4 and 2089 to 1274 Ma, respectively. These values indicate that their primary magma was derived from partial melting of lower crustal material of the NCC, but with a contribution of mantle-derived material. We therefore conclude that Early Cretaceous magmatism in the northeastern NCC occurred in an extensional environment related to westward subduction of the Paleo-Pacific Plate beneath Eurasia.  相似文献   
72.
M. P. Atherton  A. A. Ghani 《Lithos》2002,62(3-4):65-85
None of the existing models for calc-alkaline “Late Granite” (Siluro–Devonian) genesis in the metamorphic Caledonian orogenic belt of Ireland and Scotland fully explains their spatial, age or chemical character. A consistent model must involve the closure of Iapetus Ocean, where slab breakoff is a natural consequence of attempted subduction of continental crust. Expected outcome is a long linear belt of high-K, calc-alkaline magmas, some with characteristic trace element signatures, specifically high Ba, Sr and Zr. Other features include the critical magmatic association of coeval appinite and granite, rapid uplift, erosion and the low-grade regional metamorphism in the Southern Uplands. The linear heat pulse on breakoff is spatially, intensity and time limited producing small volume melts emplaced as separated plutons, over a short time span. Magmatism in the Caledonian metamorphic belt is accurately accounted for by slab breakoff on collision of Baltica with the Scoto–Greenland margin during the Scandian orogeny, following Iapetus Ocean closure. The two chemically, isotopically and areally distinctive suites in the metamorphic belt in Scotland, viz. the Argyll and Cairngorm Suites, can be modelled by reference to the Donegal granites where sequential partial melting of new, lamprophyric underplated crust, then shallower old crust, as heat conduction moved up through the crust on slab breakoff, produced magmas characteristic of the two suites.  相似文献   
73.
苏门答腊岛(印尼)成矿带的岩浆作用和源区及其对比   总被引:1,自引:0,他引:1  
本文介绍了苏门答腊岛上两个成矿带(即铜-金矿成矿带和锡矿成矿带)的矿产分布,岩浆岩的岩石类型和地球化学特征。根据本研究课题在巴东地区岩石化学资料,本文总结了铜-金矿成矿带含矿母岩的地球化学特征,探讨其岩浆岩成因和源区。同时,将其锡矿成矿带岩浆岩的岩石类型和地球化学-大地构造环境与其相邻地体进行对比。研究结果表明:西苏门答腊地体的铜-金矿成矿带的含矿母岩为SI-型埃达克质花岗岩,形成于活动大陆边缘(ACM)火山弧构造环境,其岩浆物质主要来源于俯冲洋壳板片局部熔融叠加上弱的地幔楔熔融-混染作用(MASH)。而东苏门答腊地体‘锡岛’和"暹缅马苏"地体的锡矿带含矿母岩为过铝质(S-型)花岗岩类,其形成构造环境为碰撞带的弧后盆地和陆内裂谷,物质源区来自地壳重熔和岩浆分异。地球化学资料表明,该两地体具有共同的深部岩浆源区。  相似文献   
74.
梅勇文 《江西地质》1997,11(2):32-39
武夷及邻区燕山期成矿作用在环太平洋成矿带中具有四大特色:(1)成岩成矿在时空上从陆内向陆缘发展;(2)岩浆成矿作用具多层次造浆与多层次就位成矿;(3)华夏系列多字型复合构造控岩控矿;(4)成岩成矿具北北东向向洋分带与纬向分带叠加的“双向”分带。武夷地区是寻找火山-斑岩铜、金、锡、银铅锌等矿产的重要成矿带,又是找寻动热变质或花岗岩-剪切带型金矿床的有利地带。  相似文献   
75.
Abstract: The Late Cretaceous Khabr–Marvast tectonized ophiolite is located in the middle part of the Nain–Baft ophiolite belt, at the south-western edge of the central Iranian microcontinent. Although all the volcanic rocks in the study area indicate subduction-related magmatism (e.g. high LILE (large ion lithophile elements) / HFSE (high field strenght elements) ratios and negative anomalies in Nb and Ta), geological and geochemical data clearly distinguish two distinct groups of volcanic rocks in the tectonized association: (1) group 1 is comprised of hyaloclastic breccias, basaltic pillow lavas, and andesite sheet flows. These rocks represent the Nain–Baft oceanic crust; and (2) group 2 is alkaline lavas from the top section of the ophiolite suite. These lavas show shoshonite affinity, but do not support the propensity of ophiolite.  相似文献   
76.
青藏高原拉萨地块是揭示印度与亚洲大陆碰撞的最重要的地区之一,其中广泛发育的碰撞-后碰撞岩浆作用记录了这一地区从特提斯洋俯冲消减到印度大陆陆内俯冲的全过程.本文基于对最新的Sr-Nd同位素资料的分析,从高原岩石圈的三种主要地球化学端元入手,分析了拉萨地块碰撞-后碰撞岩浆作用的类型及其在大陆俯冲与成矿作用方面的意义.青藏高原岩石圈可以分为三种主要的地球化学端元,一是青藏高原北部地球化学省(包括羌塘、可可西里和西昆仑)代表的青藏原始岩石圈地幔地球化学端元,42Ma以来在高原北部广泛分布的钾质岩浆岩的Nd-Sr同位素成分比较均一和稳定,同位素比值的范围较窄,^87Sr/^86Sr=0.707101~0.710536,εNd=-2~-9,tDM=0.7~1.3Ga;二是雅鲁藏布江蛇绿岩代表的新特提斯洋地幔端元,^87Sr/^86Sr=0.703000~0.706205,εNd=+7.8~+10,呈印度洋型MORB特征,属于印度洋型地幔域;三是喜马拉雅带地壳基底和花岗岩类显示的喜马拉雅地壳地球化学端元,εNd=-12~-25,^87Sr/^86Sr=0.733110~0.760000,具相对古老的Nd模式年龄,tDM=1.9~2.9Ga.拉萨地块碰撞-后碰撞岩浆作用可以划分出三种地球化学类型,即拉萨地块原地型、亲特提斯洋型和亲喜马拉雅型.这三种岩浆作用类型受控于上述三种地球化学端元在其源区的比例及相互作用.其中,拉萨地块原地型与青藏高原北部地球化学省特征一致,亲特提斯洋型代表了与新特提斯洋俯冲消减及其后的再循环有关的岩浆作用,亲喜马拉雅型岩浆岩的Sr-Nd同位素特征则可能指示了喜马拉雅大陆地壳端元的参与.超钾质火山岩是揭示印度大陆岩石圈向北俯冲的重要证据,印度大陆岩石圈俯冲作用可能同时控制了超钾质岩石和盐类矿床的产出,古老地壳物质作为源区参与了超钾质岩石和盐类矿床的成岩与成矿作用.拉萨地块中部地区的含矿斑岩属于亲特提斯洋型岩浆作用,因此具亲特提斯洋型特征的火山岩、浅成斑岩和深成侵入岩,是进一步寻找铜、钼、金矿床的重要目标.  相似文献   
77.
乌兰德勒岩体为一个由两次岩浆侵入形成的大型复式岩体,主要由黑云母正长花岗岩和黑云母二长花岗岩组成,两种岩石的形成年龄分别为140 ± 2 Ma 和161 ± 1 Ma。黑云母正长花岗岩显示高分异花岗岩的地球化学特征,该类岩石与成矿关系密切。黑云母二长花岗岩表现为低Sr 高Yb 的地球化学特征。地球化学资料显示黑云母二长花岗岩为A 型花岗岩,形成时的构造环境为伸展体制。  相似文献   
78.
The work is dedicated to most important abiotic processes of the Early Precambrian, effect of which is recorded in continental crust, and to complementary processes in subcontinental mantle. We intend to figure out when a certain process was triggered first in the past and what indications suggest its further activity, evolution and possible cessation in subsequent geological history. Considerations are based on described natural objects characterizing particular geological events and enabling the cause-and-effect interpretation in order to understand different viewpoints known from publications. Considered in the work are the early Precambrian greenstone belts and ophiolites, island-arc systems and ecologites, magmatism unconnected with subduction zones (rifting-related, plateau basalts, dykes, kimberlites) and anorthosites representing a group of heterochronous intrusions of complicated genesis. Main considerations are premised with a brief review of the earliest geodynamic phenomena associated with meteorite impacts by termination of the planetary accretion.  相似文献   
79.
The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes.Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic–Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian–Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai–Sayan rift system); Late Paleozoic–Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic–Cenozoic (origin of continental volcanic areas in Central Asia).Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes practically did not cease to affect crustal growth and transformations in CAOB in relation to the migration of the Siberian continent throughout the whole time span when the belt was formed above a cluster of hotspots, which is compared with the African superplume.  相似文献   
80.
《International Geology Review》2012,54(13):1641-1659
Eocene mafic volcanic rocks occurring in an E–W-trending, curvilinear belt along and north of the Izmir–Ankara–Erzincan suture zone (IAESZ) in northern Anatolia, Turkey, represent a discrete episode of magmatism following a series of early Cenozoic collisions between Eurasia and the Gondwana-derived microcontinents. Based on our new geochronological, geochemical, and isotope data from the Kartepe volcanic units in northwest Anatolia and the extant data in the literature, we evaluate the petrogenetic evolution, mantle melt sources, and possible causes of this Eocene volcanism. The Kartepe volcanic rocks and spatially associated dikes range from basalt and basaltic andesite to trachybasalt and basaltic trachyandesite in composition, and display calc-alkaline and transitional calc-alkaline to tholeiitic geochemical affinities. They are slightly to moderately enriched in large ion lithophile (LILE) and light rare earth elements (LREE) with respect to high-field strength elements (HFSE) and show negative Nb, Ta, and Ti anomalies reminiscent of subduction-influenced magmatic rocks. The analysed rocks have 87Sr/86Sr(i) values between 0.70570 and 0.70399, positive ?Nd values between 2.7 and 6.6, and Pb isotope ratios of 206Pb/204Pb(i) = 18.6–18.7, 207Pb/204Pb(i) = 15.6–15.7, and 208Pb/204Pb(i) = 38.7–39.1. The 40Ar/39Ar cooling ages of 52.7 ± 0.5 and 41.7 ± 0.3 Ma obtained from basaltic andesite and basalt samples indicate middle to late Eocene timing of this volcanic episode in northwest Anatolia. Calculated two-stage Nd depleted mantle model (TDM) ages of the Eocene mafic lavas range from 0.6 to 0.3 Ga, falling between the TDM ages of the K-enriched subcontinental lithospheric mantle of the Sakarya Continent (1.0–0.9 Ga) to the north, and the young depleted mantle beneath central Western Anatolia (0.4–0.25 Ga) to the south. These geochemical and isotopic features collectively point to the interaction of melts derived from a sublithospheric, MORB-like mantle and a subduction-metasomatized, subcontinental lithospheric mantle during the evolution of the Eocene mafic volcanism. We infer triggering of partial melting by asthenospheric upwelling beneath the suture zone in the absence of active subduction in the Northern Neotethys. The geochemical signature of the volcanic rocks changed from subduction- and collision-related to intra-plate affinities through time, indicating an increased asthenospheric melt input in the later stages of Eocene volcanism, accompanied by extensional deformation and rifting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号