首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
地球物理   2篇
地质学   21篇
海洋学   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
11.
Bathonian to Oxfordian strata occur onshore in two principal locations over 30 km apart on the coast of the Moray Firth, at Brora and Balintore. The existing lithostratigraphy has the same formation names applied to both successions despite profound differences, exemplified in their schemes of local members. Furthermore, three of the formation names include the same place name, and use obsolete lithological terms.  相似文献   
12.
The Oxfordian–Lower Hauterivian section of the Nordvik Peninsula (northern Central Siberia) is a reference for developing zonal scales for various fossil groups and improving the Boreal zonal standard. In the middle 1950s–late 1980s, it was studied extensively by geologists, stratigraphers, lithologists, and experts on various fossil groups. These studies yielded rich fossil and microfossil collections and a set of parallel zonal scales for various faunal groups. Recently, a new detailed ammonite zonation of the Oxfordian and Kimmeridgian units of this section has been proposed. These results contradict the previous biostratigraphic data on ammonites, foraminifers, and palynomorphs. In the present paper, all the biostratigraphic data on the Oxfordian and Kimmeridgian units of the Nordvik Peninsula (Cape Urdyuk-Khaya) and northern Central Siberia undergo a comprehensive analysis and comparison with those on the Boreal Realm. The ammonite-constrained stratigraphic position of the lower Upper Jurassic in the Cape Urdyuk-Khaya section is interpreted as Upper Oxfordian or Middle Oxfordian. In our view, this difference in the understanding is due to the misidentification of some Oxfordian ammonite forms. The zones based on other fossil groups (foraminifers, dinocysts) which were distinguished in the Upper Oxfordian and Kimmeridgian sections of the Nordvik Peninsula are well traceable circumarctically. Their stratigraphic position in various regions of the Northern Hemisphere is constrained by ammonites and bivalves. However, if we use the last alternative ammonite zonation of this section part, hardly explicable contradictions will appear in interregional foraminiferal and dinocyst correlations.  相似文献   
13.
The study of sedimentary facies in the quarry of Dompcevrin (Middle Oxfordian) located northwestward of St-Mihiel (Meuse department) provides evidences of high-energy depositional conditions. The occurrence of beaches associated with hurricane coral breccias containing megaclasts is characteristic of platform edge environments. The open sea was located northeastward, in the direction of Germany, as it is indicated by the direction of progradation of beaches. It is concluded that the Oxfordian carbonate platform of Lorraine was opened to the northeast toward the Germanic Sea during the Middle Oxfordian. To cite this article: C. Carpentier et al., C. R. Geoscience 336 (2004).  相似文献   
14.
Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from −0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84–92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.  相似文献   
15.
The Neuquén back-arc basin is located on the west margin of the South American platform between latitudes 36° and 40° S. The basin is famous for its continuous sedimentary record from the Late Triassic to Cenozoic comprising continental and marine clastic, carbonate, and evaporitic deposits up to 2.600 m in thickness.The stratigraphical and paleontological studies of the outcrops of the La Manga Formation, Argentina, located near the Bardas Blancas region, Mendoza province (35° S and 69° O) allow the reconstruction of the sedimentary environments of an Oxfordian carbonate ramp, where outer ramp, middle ramp, inner ramp (oolitic shoal), inner ramp margin (patch reef) lagoon and paleokarst were differentiated. The reefs consist of back reef facies and in situ framework of coral boundstones that was formed at the top of shallowing-upward succession.Coral reefs were analyzed by defining coral colonies shapes, paleontological content, coral diversity and taphonomy studies. In some studied sections abundant fragments of gryphaeids, encrusting bryozoans, and isolated sponges provided a suitable substrate for coral colonization; however, other sections show an increase in the proportions of ooids, peloidal and coral intraclasts.The core reef facies is composed of white-grey unstratified and low diversity scleractinian coral limestone dominated by robust and thinly branching corals with cerioid–phocoid growths and massive coral colonies with meandroid–thamnasteroid growth forms.The assemblage is characterized by Actinastraea sp., Australoseris sp., Thamnasteria sp. and Garateastrea sp. Internal facies organization and different types of coral colonies allow to recognize the development of varying framework as well as intercolony areas. A superstratal growth fabric characterizes the coral assemblage. On the basis of coral growth fabric (branche and domal types), the reef of La Manga Formation is considered a typical mixstones. The intercolony areas consist of biomicrites and biomicrorudites containing abundant coral fragments, parautochthonous gryphaeids and another bivalves (Ctenostreon sp.), gastropods (Harpagodes sp., Natica sp.), echinoderms test and spines (Plegiocidaris sp.), miliolids, Cayeuxia sp., Acicularia sp., Salpingoporella sp., intraclasts, ooids, peloids and coated grains.The domal growth forms are probably more protected against biological and physical destruction, meanwhile delicate branching growth forms with very open and fragile framework were more affected and fragmented due to wave action and bioerosion.The reef fabric shows different intervals of truncation as consequence of erosion resulting from coral destruction by storm waves or currents. The maximum flooding surface separates oolitic shoal facies below from the aggradational and progradational coralline limestones facies above. Subsequent sea-level fall and karstification (148 Ma) affected reef and oolitic facies.  相似文献   
16.
The feasibility study of long‐term radioactive waste storage in low‐permeable rocks has been performed by considering various damage and failure scenarios. This study aims at the numerical investigation of gas (mainly produced by corrosion of metallic parts) migration properties through the low‐permeable formation of Callovo‐Oxfordian argillite. Traditional methods, based on macroscopic approaches or homogeneous transport properties, are inappropriate to analyze this issue at the mesoscopic/microscopic scale. In this study, realistic porous space morphologies are constructed through union of excursions of random fields considering different experimental pore size distributions. Afterwards, purely geometric analysis of pore space is conducted by morpho‐mathematical operations for the purpose of the extraction of preferential gas transport pathways and the prediction of the gas entry pressure, the gas breakthrough pressure, and the following imbibition process.  相似文献   
17.
The Middle Oxfordian of the eastern Paris Basin constitutes a remarkable example of the growth and demise of a carbonate platform. Fischer plots, sedimentary and diagenetic features allow the identification of four depositional cycles (S5 to S8) in the Transversarium Zone; they are inserted in a lower frequency cycle of increased/decreased accommodation space (SoIII). The long‐term period of accommodation creation occurred during the older S5 and S6 cycles, the maximum accommodation zone being located in the lower part of the S6 cycle. This high accommodation period was tectonically controlled and was coeval with local distensive activity of a Hercynian fault. A major minimum accommodation zone exists during the S8 cycle. At that time, the platform was isolated and presented both a windward and a leeward margin. The growth of the platform was favoured by a warm and arid climate, oligotrophic conditions and reduced siliciclastic input during a highstand in relative sea‐level. These palaeoenvironmental features favoured the proliferation of phototrophic organisms producing carbonate material. The death of the platform was generated by a reduction in the carbonate production surface during a lowstand in relative sea‐level and by the appearance of mesotrophic conditions induced by the increase in siliciclastic inputs at the beginning of a period with a cooler and more humid climate. In the eastern Paris Basin, during the Middle Oxfordian, the parasequences are ordered and present ‘greenhouse’ characteristics. In contrast, at the beginning of the S8 cycle, the randomness in the thickness of contiguous parasequences increased. Decreased carbonate production during the lowstand caused by a transition from photozoan to heterozoan benthic communities certainly favoured this randomness and the appearance of catch‐down parasequences.  相似文献   
18.
The distribution of calcareous nannofossils and foraminifers occurring in the Callovian-Oxfordian deposits in the southwest of Moscow is studied. Nannoplankton-bearing beds and foraminiferal zones are distinguished. The Retecapsa incompta Beds correspond in range to the Ophthalmidium sagittum-Epistomina volgensis and Ophthalmidium strumosum-Lenticulina brestica foraminiferal zones as well as the lower part of Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria manivitae, Crepidolithus perforata, and Watznaueria fossacincta (lowermost part) beds span interval of the Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria fossacincta Beds are concurrent to the Lenticulina ponderosa-Flabellamina lidiae Zone of the foraminiferal scale.  相似文献   
19.
20.
Mesozoic rocks are extensively and excellently preserved in the western Indian shield in several basins. The Kachchh Mainland Basin (KMB), comprising six small sub‐basins, is the main repository of these sediments. Habo Dome Basin, situated in the easternmost part of KMB and largest among the six basins, hosts clastics of the Chari Formation of Jurassic age. The fluctuating transgressive–regressive facies cycle, developed during the Callovian and Late Early Oxfordian in the Habo Dome Basin, was mainly controlled by local tectonics and not by global eustatic fluctuations. Near magmatic relationships are displayed by various elements of the clastic rocks of Habo Dome Basin. Two litho‐chemical groups have been identified in Habo Dome Basin, which are cyclically repeated over entire lithostratigraphic sequence, indicating alternate pulses of sediment inputs from two different sources under palpitating tectonic conditions. Provenance indicator elements and their ratios coupled with source modeling indicate predominantly felsic source with basic and alkalic components. Integrated analysis of petrograhic and geochemical characteristics suggests two source terranes for these rocks: a granitoid source with significant basic volcanics (Banded Gneissic Complex) and a granite–gneissic source with minor alkaline volcanics (Nagarparkar Massif) lying to northeast and NNW respectively. The petrochemistry of Habo Dome clastics suggests their deposition in a fault controlled sink which was influenced by sea level changes. Drifting of the Indian plate resulted in the opening of series of rifted basins in the Kachchh Mainland during Late Triassic/Early Jurassic, which were closed later during collision of Indian plate with Eurasia at early Eocene. The Habo Dome Basin which opened up as a half graben in response to the initial stress regime, remained tectonically unstable until the cessation of pre and post collisional stress regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号