首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14173篇
  免费   2293篇
  国内免费   4187篇
测绘学   543篇
大气科学   1492篇
地球物理   3558篇
地质学   9734篇
海洋学   1213篇
天文学   117篇
综合类   756篇
自然地理   3240篇
  2024年   58篇
  2023年   162篇
  2022年   467篇
  2021年   587篇
  2020年   644篇
  2019年   785篇
  2018年   672篇
  2017年   572篇
  2016年   706篇
  2015年   726篇
  2014年   988篇
  2013年   1089篇
  2012年   909篇
  2011年   1066篇
  2010年   940篇
  2009年   1085篇
  2008年   1023篇
  2007年   1064篇
  2006年   1121篇
  2005年   829篇
  2004年   781篇
  2003年   685篇
  2002年   589篇
  2001年   478篇
  2000年   402篇
  1999年   345篇
  1998年   327篇
  1997年   280篇
  1996年   256篇
  1995年   193篇
  1994年   157篇
  1993年   142篇
  1992年   114篇
  1991年   86篇
  1990年   70篇
  1989年   42篇
  1988年   46篇
  1987年   29篇
  1986年   27篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   4篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
土壤中氟的形态分析   总被引:11,自引:3,他引:8  
以宁夏盐池地区高氟土壤为例,采用连续提取法对土壤样品中各形态氟进行提取,离子色谱法测定各形态氟的含量。根据研究目的及土壤特点将氟的形态划分为水溶态、离子交换态、可还原态、可氧化态及残渣态5种形态;对各种形态连续提取过程中使用的提取液进行了选择。采用建立的方法获得提取土壤中F-的检出限为0.76μg/g;方法精密度(RSD,n=7)各形态氟为水溶态氟11.3%,离子交换态氟13.5%,可还原态氟10.7%,可氧化态氟8.9%。  相似文献   
42.
A simple mathematical model for soil nail and soil interaction analysis   总被引:1,自引:0,他引:1  
Soil nails have been widely used to stabilize slopes and earth retaining structures in many countries and regions, especially, in Hong Kong. The analysis of the interaction between a soil nail and the surrounding soil is of great interests to both design engineers and researchers. In this paper, authors present a simple mathematical model for the interaction analysis of a soil nail and the surrounding soil considering a few key factors which are soil dilation, bending of the soil nail, vertical pressure, and non-linear subgrade reaction stiffness. The lateral subgrade reaction between the soil and the soil nail is assumed to obey a hyperbolic relation. Reported test data in the literature are used to verify the present model. The contributions of the soil-nail bending on the pull-out resistance are evaluated in two case studies.  相似文献   
43.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   
44.
The aim of this interdisciplinary study is to examine a component of the hydrological cycle in Galapagos by characterizing soil properties. Nine soil profiles were sampled on two islands. Their physical and hydrodynamic properties were analyzed, along with their mineralogical composition. Two groups of soils were identified, with major differences between them. The first group consists of soils located in the highlands (>350 m a.s.l.), characterized by low hydraulic conductivity (<10−5 m s−1) and low porosity (<25%). These soils are thick (several meters) and homogeneous without coarse components. Their clay fraction is considerable and dominated by gibbsite. The second group includes soils located in the low parts of the islands (<300 m a.s.l.). These soils are characterized by high hydraulic conductivity (>10−3 m s−1) and high porosity (>35%). The structure of these soils is heterogeneous and includes coarse materials. The physical properties of the soils are in good agreement with the variations of the rainfall according to the elevation, which appears as the main factor controlling the soil development. The clayey alteration products constrain soils physical and hydrodynamic properties by reducing the porosity and consequently the permeability and also by increasing water retention.  相似文献   
45.
A Triassic carbonate unit has been intensively drained by zinc and lead ore mines and numerous borehole fields since the nineteenth century. Its groundwater recharge has increased due to: pumping of water from boreholes, mining activity, and urbanization. An approach to determine the amounts of the recharge at a variety of spatial scales is presented in the paper. Different methods were used to identify and quantify recharge components on a regional and local scale: mathematical modelling was performed for four aquifers included in an aquifer system, an analytical estimation based on the assumption that an average recharge is equal to the average discharge of the hydrogeological system—for six man-made drainage centres, and the method of water level fluctuation (WLF) was applied in one observation borehole. Results of modelling have been supplemented by observation of environmental tracers (δ18O, δ2H, 3H), noble gases temperatures, and 4Heexc in groundwater. The regional aquifer’s current recharge according to estimations performed by means of modelling varies from 39 to 101 mm/year on average. Depending on the aquifer site the average precipitation ranges from 779 to 864 mm/year. In the confined part of the aquifer average recharge ranges from 26 to 61 mm/year. Within outcrops average recharge varies from 96 to 370 mm/year. Current recharge estimated by the analytical method for man-made drainage centres varies from 158 up to 440 mm/year. High values are caused by different recharge sources like precipitation, induced leakage from shallow aquifers, and water losses from streams, water mains and sewer systems. Pumping of water, mining and municipal activities constitute additional factors accounting for the intensified recharge.  相似文献   
46.
Deep dissolution affects great part of soluble rocks (e.g. gypsum and anhydrite) of the Western Italian Alps. The related superficial phenomena (sinkholes, gravity-induced processes and a local worsening of geomechanical rock properties) are not limited to typical karsts landscape and cause slope instability also affecting populated sites and infrastructures. The paper aims to describe general characteristic of dissolution phenomena, to interpret their conditioning factors and evolutionary stages and to assess possible hazards due to their superficial effects.The search for evidences of deep dissolution leads to the selection of representative sites in the central part of the Western Italian Alps (Piemonte and Valle d'Aosta Region). Detailed geological and geomorphological studies have been used to classify the selected sites by type, size and variable state of activity. Very different evolutionary stages of dissolution phenomena have been interpreted by comparison of case-studies: some are early “embryonic”; others are more evolved, up to typical sinkholes, or even remodelled by other phenomena. Some cases show an extreme complexity in the interactions between corrosion phenomena and other geomorphic processes: slope deformations, from one side, and karst, fluvial and glacial phenomena, to the other. A wide range of movement rates on slope instabilities induced by deep dissolution have been estimated by topographic and geomorphic data. Geochemical data on removed rocks by dissolution indicate 0.4 mm/year values for local subsidence. Historical and technical data indicate low frequency of major dissolution-induced collapses, but highlight widespread damages to tunnels, roads and buildings, especially along slopes.  相似文献   
47.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
48.
49.
50.
The concentrations of twenty four chemical elements in the surface layer of natural desert soils and the cultivated farmland soils were measured at a desert-oasis ecotone in the middle of Heihe river basin, north-west China. Background values were estimated for (a) major elements (Si 335.3 g kg− 1, Al 49.4 g kg− 1, Fe 19.1 g kg− 1, Ca 29.4 g kg− 1, Mg 8.9 g kg− 1, K 20.1 g kg− 1, Na 17.5 g kg− 1 and P 0.338 g kg− 1), (b) heavy metals and non-metals (Cr 55.8 mg kg− 1, Mn 404.8 mg kg− 1, Ni 17.7 mg kg− 1, Cu 5.1 mg kg− 1, Zn 33.7 mg kg− 1, Pb 15.5 mg kg− 1 and As 5.2 mg kg− 1) and (c) other trace elements (Ti 2.0 mg kg− 1, V 55.3 mg kg− 1, Co 5.7 mg kg− 1, Rb 82.4 mg kg− 1, Sr 232.9 mg kg− 1, Y 14.7 mg kg− 1, Zr 194.9 mg kg− 1, Nb 7.8 mg kg− 1 and Ba 720.6 mg kg− 1). After natural desert soil was cultivated for agricultural use, significant changes in element concentrations occurred under tillage, irrigation and fertilisation management. Compared to natural soil, the for the levels of Si, K, Na, Sr, Zr and Ba decreased, and no changes were observed for Rb, while the values of the other 17 elements increase in agricultural soil from 1.2 to 3.5 times. However, their absolute concentrations are still low, suggesting that the arable soil in this region remains comparatively a clean soil. The increased silt, clay and organic carbon content, under long-term irrigation, enriched the fine-grained materials, and application of fertilisers and manure contributed to the accumulation of most elements in arable soil. The accumulation of elements in agricultural soil increased with increasing cultivation years and extent of soil development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号