首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   14篇
  国内免费   25篇
地球物理   6篇
地质学   152篇
海洋学   1篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   39篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
51.
Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100–200 km apart. In the northern belt, metamorphic rocks dated at 284–285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada.  相似文献   
52.
Recumbent folding in eastern Tasmania affected turbidites containing Lower to Middle Ordovician (Bendigonian Be1 to Darriwilian Da3) fossils, but not stratigraphically overlying turbidites containing Silurian (Ludlow) graptolites, and is of a timing consistent with Ordovician to Silurian Benambran orogenesis on the Australian mainland. Two subsequent phases of upright folding post‐date deposition of turbidites containing Devonian plant fossils but pre‐date intrusion of Middle Devonian granitoids, and are of Tabberabberan age. A closely spaced disjunctive cleavage (S2), associated with the first phase of Tabberabberan folding, everywhere cuts a slaty cleavage (S1) associated with the earlier formed recumbent folds. However, refolding associated with development of S2 is not always clear in outcrop and it is proposed that coincident tectonic vergence between the two events has resulted in reactivation of recumbent D1 structures during the D2 event. The transition to rocks not affected by recumbent folding coincides with a marked change in sedimentology from shale‐ to sand‐dominated successions. This contact does not outcrop but, from seismic data, appears to dip moderately to the east, and can only be explained as an unconformity. The current grouping of all pre‐Middle Devonian turbidites in eastern Tasmania into the one Mathinna Group is misleading in that the turbidite sequence can be subdivided into two distinct sedimentary packages separated by an orogenic event. It is proposed that the Mathinna Group be given supergroup status and existing formations placed into two new groups: an older Early to Middle Ordovician Tippogoree Group and a younger Silurian to Devonian Panama Group.  相似文献   
53.
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   
54.
A new tectonic model for Tasmania incorporates subduction at the boundary between eastern and western Tasmania. This model integrates thin‐ and thick‐skinned tectonics, providing a mechanism for emplacement of allochthonous elements on to both eastern and western Tasmania as well as rapid burial, metamorphism and exhumation of high‐pressure metamorphic rocks. The west Tamar region in northern Tasmania lies at the boundary between eastern and western Tasmania. Here, rocks in the Port Sorell Formation were metamorphosed at high pressures (700–1400 MPa) and temperatures (400–500°C), indicating subduction to depths of up to 30 km. The eastern boundary of the Port Sorell Formation with mafic‐ultramafic rocks of the Andersons Creek Ultramafic Complex is hidden beneath allochthonous ?Mesoproterozoic turbidites of the Badger Head Group. At depth, this boundary coincides with the inferred boundary between eastern and western Tasmania, imaged in seismic data as a series of east‐dipping reflections. The Andersons Creek Ultramafic Complex was previously thought of as allochthonous, based mainly on associations with other mafic‐ultramafic complexes in western Tasmania. However, the base of the Andersons Creek Ultramafic Complex is not exposed and, given its position east of the boundary with western Tasmania, it is equally likely that it represents the exposed western edge of autochthonous eastern Tasmanian basement. A thin sliver of faulted and metamorphosed rock, including amphibolites, partially separates the Badger Head Group from the Andersons Creek Ultramafic Complex. Mafic rocks in this package match geochemically mafic rocks in the Port Sorell Formation. This match is consistent with two structural events in the Badger Head Group showing tectonic transport of the group from the west during Cambrian Delamerian orogenesis. Rather than being subducted, emplacement of the Badger Head Group onto the Andersons Creek Ultramafic Complex indicates accretion of the Badger Head Group onto eastern Tasmania. Subsequent folding and thrusting in the west Tamar region also accompanied Devonian Tabberabberan orogenesis. Reversal from northeast to southwest tectonic vergence saw imbricate thrusting of Proterozoic and Palaeozoic strata, possibly coinciding with reactivation of the suture separating eastern and western Tasmania.  相似文献   
55.
The Tasman Line, a much‐discussed concept in the geology and tectonics of eastern Australia, has a long and chequered history of interpretation. This extends to current debates regarding the age and position of the Tasman Line in Gondwana‐Rodinia reconstructions. We present constraints, from mapping, geochemistry and geophysics, on the interpretation of gravity and magnetic lineaments attributed to the Tasman Line in New South Wales, South Australia, Victoria and Tasmania. These pieces of evidence suggest a protracted and complex latest Neoproterozoic to Carboniferous geological history that produces a variety of geophysical responses, rather than a simple ‘Line’. We also find no evidence of Rodinian breakup age activity responsible for any of the anomalies. In light of these findings, our preference is that the Tasman Line concept be abandoned as misleading, especially with regard to models of Rodinia‐Gondwana breakup, which must have occurred elsewhere, possibly well to the east. Instead, the rocks preserved in the westernmost part of the Tasmanides are consistent with previously proposed ‘Southwest Pacific’‐style models for Neoproterozoic continental breakup, margin formation and reaccretion of continental fragments in the Early Palaeozoic.  相似文献   
56.
庐山运动   总被引:1,自引:0,他引:1  
毕华  谭克仁 《矿物学报》1997,17(3):291-296
本文简述了庐山隆-滑构造的基本特征。在中元古代双桥山群底部的顺层韧变带中,把前人的断层构造砾或沉积成因的巨厚层状变质复成分砾岩,自上而下分离出三层砾:上部砾、中部砾、下部砾。其中上部砾为断层构造砾;中部砾不是砾,而是构造分泌物;下部砾为沉积底砾。在此基础上,同时参考研究区早元古代星子群与中元古代双桥山群构造、岩浆活动、变质作用等方面的差异,建立了“庐山运动”,其活动时间为2200~1800Ma,这可以与华北及华南其它地区同时期的构造运动相对比,但庐山运动的强度相对较弱,表现为以垂直隆升为特色的造陆运动,它曾使研究区早元古代晚期至少遭受过长达200Ma(1800~1600Ma)的风化、剥蚀作用。  相似文献   
57.
The geological setting, petrography and bulk mineral chemistry of a monzodiorite and a presumably consanguineous megaporphyry with large (up to 25 cm) labradorite megacrysts, both intruding the upper Proterozoic Saramuj Conglomerate in south-west Jordan (south eastern shore of the Dead Sea), were examined. The crystallization temperatures of the monzodiorite and the megaporphyry as determined from pyroxene thermometry and supported by contact metamorphic mineralogy are about 700 and 900°C, respectively. The intrusion depth of the monzodiorite is about 3–4 km. The monzodiorite was emplaced in the Saramuj Conglomerate at about 595 + 2 Ma ago according to Rb/Sr and U/Pb age determinations.The stratigraphic positions of the monzodiorite, megaporphyry and their host rock (the Saramuj Conglomerate) were compared with time-equivalent lithologies in the Arabian-Nubian Shield. Correspondence to: H. Wachendorf  相似文献   
58.
Structural, metamorphic and isotopic data obtained from the Nogoli Metamorphic Complex of western Sierra de San Luis indicate that the Early Paleozoic Famatinian Orogeny overprinted an already structured and metamorphosed older basement. The older geological features are relict NW trending fabric associated with high-grade (amphibolite facies) regional metamorphism preserved within thin strips of schists and paragneisses and in the core of mafic to ultramafic lenses. Arc magmatism, medium P (Barrovian type)/high T (amphibolite to granulite facies) regional metamorphism and penetrative NNE to NE trending foliation are related to the building of the Famatinian orogenic belt. The P-T conditions of the Famatinian prograde metamorphism reached a pressure peak of ca. 8 kb, with a thermal peak from -750°C up to -820°C. U-Pb conventional and chemical dating and Ar-Ar plateau ages constrain the peak of the main orogenic phase related to the Famatinian belt to 470–457 Ma (Early to Mid-Ordovician). Greenschist facies retrograde metamorphism closely associated with shear zones and secondary Ar-Ar plateau and Sm-Nd ages suggest that a late to post-orogenic phase of the Famatinian belt was active at least since -445 Ma. This phase continued during the Silurian to Late Devonian times through multiple reactivation of early shear zones. The Famatinian Orogeny reset a previous thermal history and therefore, the timing of the relict fabric could not be constrained conclusively with radiometric dates. Despite this difficulty, a range of 520 to 490 Ma suggests some inheritance from Pampean events registered by the older NW-SE fabric. The Early to Mid-Ordovician regional metamorphism and ductile deformation of the western Sierra de San Luis is interpreted as the orogenic effects of the collision of the allochthonous Cuyania terrane with the autochthonous proto-Pacific margin of Gondwana during the Famatinian Orogeny.  相似文献   
59.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   
60.
《Geodinamica Acta》2013,26(3-4):155-164
New structural data pointed out the presence of an older scattered migmatization event (Devonian?, M1) overcome by the well known Variscan migmatization event (Lower-Middle Carboniferous, M2) related to the Late extensional tectonic that affected the High Grade Metamorphic Complex (HGMC) in the Variscan Belt of Sardinia (Italy). The M1 event is only recognizable in the kyanite – amphibole bearing migmatitic gneiss. Both migmatization events (M1 and M2) are characterized by a syn-tectonic non coaxial deformations (D1 and D2 deformational events). D1 shows a top to NW sense of shear while the D2 event a top to NE/SE sense of shear (the shear senses are considered at the present Sardinia – Corsica block position in the Mediterranean sea). The M2+D2 is characterized by a complicate, composite normal shear network; the M1+D1 by inverse shear zones. The M2+D2 is transposed by the late D3 strike slip shear event: the D3 is characterized by strike slip shear zones syn-kinematic to the emplacement of Late Carboniferous granitoids (320 Ma – 300 Ma). Despite the absence of geochronological data about the M1+D1 event, the field relationships suggest, for first time, an older migmatization process (Devonian?) syn-tectonic with the late stage of thickness of the Sardinia Variscan Belt. Similar evolutions are recognized in different segments of the Variscan Belt such as the Massif Central (France) or in the eastern mid-European Variscides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号