首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   12篇
  国内免费   24篇
地球物理   6篇
地质学   148篇
海洋学   1篇
自然地理   3篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   39篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
排序方式: 共有158条查询结果,搜索用时 609 毫秒
141.
以塔里木盆地奥陶纪构造研究为基础,结合岩性、电性特征和古生物(包括微量元素)分析,认为塔中地区恰尔巴克组沉积在加里东中期运动Ⅰ幕之后,沉积较连续,无较长时间沉积间断;古生物及微量元素均指示恰尔巴克组为较深水沉积环境。通过与塔北地区恰尔巴克组岩性、电性特征对比分析,认为塔中地区存在能够与塔北相对比的恰尔巴克组。  相似文献   
142.
The ca 1600–1580 Ma time interval is recognised as a significant period of magmatism, deformation and mineralisation throughout eastern Proterozoic Australia. Within the northern Yorke Peninsula in South Australia, this period was associated with the emplacement of multiple phases of the Tickera Granite, an intensely foliated quartz alkali-feldspar syenite, a leucotonalite and an alkali-feldspar granite. These granites belong to the broader Hiltaba Suite that was emplaced at shallow crustal levels throughout the Gawler Craton. Geochemical and isotopic analysis suggests these granite phases were derived from a heterogeneous source region. The syenite and alkali-feldspar granite were derived from similar source regions, likely the underlying ca 1850 Ma Donington Suite and/or the ca 1750 Ma Wallaroo Group metasediments with some contamination from an Archean basement. The leucotonalite is sourced from a similar but more mafic/lower crustal source. Phases of the Tickera Granite were emplaced synchronously with deformation that resulted in development of a prominent northeast-trending structural grain throughout the Yorke Peninsula region. This fabric is associated with composite events resulting from folding, shearing and faulting within the region. The intense deformation and intrusion of granites within this period resulted in mineralisation throughout the region, as seen in Wheal Hughes and Poona mines. The Yorke Peninsula shares a common geological history with the Curnamona Province, which was deformed during the ca 1600–1585 Ma Olarian Orogeny, and resulted in development of early isoclinal and recumbent folds overprinted by an upright fold generation, a dominant northeast-trending structural grain, mineralisation, and spatially and temporally related intrusions. This suggests correlation of parts of the Gawler Craton with the Curnamona Province, and that the Olarian Orogeny also affected the southeastern Gawler Craton.  相似文献   
143.
贾磊  吴德超  朱学强 《云南地质》2010,29(4):480-483
经历印支期、燕山期及喜马拉雅期构造运动而形成分布在区域范围内的三期三方向褶皱。大比例尺填图及构造解析表明,区内以第一期褶皱——孜河-楞古背斜为主体,构成区域整体格架,表现出近东西向弧顶向南突出的弧形特征,较好地反映了"双向俯冲"的板块动力学模式。  相似文献   
144.
In SW Sardinia, the continental Tertiary successions referred up to now to the Cixerri Fm. (Middle Eocene–Lower Oligocene?) have been investigated. Sedimentological analysis suggests these deposits lied down in fluvial environments and comprised between distal braided streams passing eastward to meandering streams/coastal environments (?) under sub-arid climates. The scrutinization of the Cixerri Fm. westernmost successions allowed one to split locally the upper from the lower part based on sedimentological and mineralogical features and indirect dating. Unfortunately, this separation cannot be set everywhere. The few upper outcrops plainly evidenced and well-constrained have been newly named Flumentepido Fm. and assigned to Late Oligocene–Early Miocene: they figure out alluvial fans and proximal braided rivers. This way, the SW Sardinia Tertiary continental sedimentation extends its persistence, contemporaneously changing its tectostratigraphic meaning: from a molassoid context related to the Pyrenean wedge dismantling (Eocene–Oligocene) to a rift-margin succession connected with the opening of the Algero-Provençal back-arc basin due to the Apennine subduction in Oligocene–Miocene times.  相似文献   
145.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   
146.
The assembly of the crystalline basement of the western Barents Sea is related to the Caledonian orogeny during the Silurian. However, the development southeast of Svalbard is not well understood, as conventional seismic reflection data does not provide reliable mapping below the Permian sequence. A wide-angle seismic survey from 1998, conducted with ocean bottom seismometers in the northwestern Barents Sea, provides data that enables the identification and mapping of the depths to crystalline basement and Moho by ray tracing and inversion. The four profiles modeled show pre-Permian basins and highs with a configuration distinct from later Mesozoic structural elements. Several strong reflections from within the crystalline crust indicate an inhomogeneous basement terrain. Refractions from the top of the basement together with reflections from the Moho constrain the basement velocity to increase from 6.3 km s−1 at the top to 6.6 km s−1 at the base of the crust. On two profiles, the Moho deepens locally into root structures, which are associated with high top mantle velocities of 8.5 km s−1. Combined P- and S-wave data indicate a mixed sand/clay/carbonate lithology for the sedimentary section, and a predominantly felsic to intermediate crystalline crust. In general, the top basement and Moho surfaces exhibit poor correlation with the observed gravity field, and the gravity models required high-density bodies in the basement and upper mantle to account for the positive gravity anomalies in the area. Comparisons with the Ural suture zone suggest that the Barents Sea data may be interpreted in terms of a proto-Caledonian subduction zone dipping to the southeast, with a crustal root representing remnant of the continental collision, and high mantle velocities and densities representing eclogitized oceanic crust. High-density bodies within the crystalline crust may be accreted island arc or oceanic terrain. The mapped trend of the suture resembles a previously published model of the Caledonian orogeny. This model postulates a separate branch extending into central parts of the Barents Sea coupled with the northerly trending Svalbard Caledonides, and a microcontinent consisting of Svalbard and northern parts of the Barents Sea independent of Laurentia and Baltica at the time. Later, compressional faulting within the suture zone apparently formed the Sentralbanken High.  相似文献   
147.
The Cadomian basement and the Cambro-Ordovician overstep sequence in Saxo-Thuringia is characterized by clastic sedimentation from the Late Neoproterozoic to the Ordovician. Magmatism in the Avalonian–Cadomian Arc preserved in Saxo-Thuringia occurred between ca. 570 and 540 Ma. Peri-Gondwanan basin remnants with Cadomian to Early Palaeozoic rocks are exposed as very low-grade metamorphosed rocks in six areas (Schwarzburg Anticline, Berga Anticline, Doberlug Syncline, North Saxon Anticline, Lausitz Anticline, and Elbe Zone). A hiatus in sedimentation between 540 and 530 Ma (Cadomian unconformity) is related to the Cadomian Orogeny. A second gap in sedimentation occurred during the Upper Cambrian (500 to 490 Ma) and is documented by a disconformity between Lower to Middle Cambrian rocks and overlying Tremadocian sediments. Major and trace-element signatures of the Cadomian sediments reflect an active margin (“continental arc”), those of the Ordovician sediments a passive margin. The Cambrian sediments have inherited the arc signature through the input of relatively unaltered Cadomian detritus. Initial Nd and Pb isotope data from the six Saxo-Thuringian areas demonstrate that there is no change in source area with time for each location, but that there are minor contrasts among the locations. (1) Cadomian sediments from the Lausitz Anticline, the Doberlug Syncline and the Elbe Zone have lower 207Pb/204Pb than all other areas. (2) The core of the Schwarzburg Anticline, which is overprinted by greenschist facies conditions and detached, is isotopically heterogeneous. One part of its metasedimentary units has less radiogenic Nd than sediments from other low-grade units of similar age in the same area. (3) Cadomian sediments from the Schwarzburg Anticline show an input of younger felsic crust. (4) The Rothstein Group shows distinct input of young volcanic material. Also, (5) Cadomian sediments from the Lausitz Anticline, the Elbe Zone and parts of the North Saxon Anticline are characterized by input from an old mafic crust. Nd isotope data of the remaining areas yield average crustal residence ages of the sediment source of 1.5–1.9 Ga, which suggests derivation from an old craton as found for other parts of the Iberian–Armorican Terrane Collage. Similarly, the Pb isotope data of all areas indicate sediment provenance from an old craton.The rapid change of lithologies from greywacke to quartzite from the Late Neoproterozoic (Cadomian basement) to the Ordovician does not reflect changes in sediment provenance, but is essentially due to increased reworking of older sediments and old weathering crusts that formed during various hiatus of sedimentation. This change in sediment maturity takes its chemical expression in lower overall trace-element contents in the quartzite (dilution effect by quartz) and relative enrichment of some trace-elements (Zr, MREE, HREE due to detrital zircon and garnet). The Rb–Sr systematics of the quartzites and one Ordovician tuffite was disturbed (most likely during the Variscan Orogeny), which suggests a lithology-controlled mobility of alkali and calc-alkali elements. By comparison with available data, it seems unlikely that only Nd TDM model ages are useful to distinguish between West African and Amazonian provenance. Nd TDM model ages of 1.5 to 1.9 Ga in combination with paleobiogeographic aspects, age data from detrital zircon, and palaeogeographic constraints, especially through tillites of the Saharan glaciation in the Hirnantian, strongly indicate a provenance of Saxo-Thuringia from the West African Craton.  相似文献   
148.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   
149.
Collisional structures from the closure of the Tornquist Ocean and subsequent amalgamation of Avalonia and Baltica during the Caledonian Orogeny in the northern part of the Trans-European Suture Zone (TESZ) in the SW Baltic Sea are investigated. A grid of marine reflection seismic lines was gathered in 1996 during the DEKORP-BASIN '96 campaign, shooting with an airgun array of 52 l total volume and recording with a digital streamer of up to 2.1 km length. The detailed reflection seismic analysis is mainly based on post-stack migrated sections of this survey, but one profile has also been processed by a pre-stack depth migration algorithm. The data provides well-constrained images of upper crustal reflectivity and lower crustal/uppermost mantle reflections. In the area of the Caledonian suture, a reflection pattern is observed with opposing dips in the upper crust and the uppermost mantle. Detailed analysis of dipping reflections in the upper crust provides evidence for two different sets of reflections, which are separated by the O-horizon, the main decollement of the Caledonian deformation complex. S-dipping reflections beneath the sub-Permian discontinuity and above the O-horizon are interpreted as Caledonian thrust structures. Beneath the O-horizon, SW-dipping reflections in the upper crust are interpreted as ductile shear zones and crustal deformation features that evolved during the Sveconorwegian Orogeny. The Caledonian deformation complex is subdivided into (1) S-dipping foreland thrusts in the north, (2) the S-dipping suture itself that shows increased reflectivity, and (3) apparently NE-dipping downfaulted sedimentary horizons south of the Avalonia–Baltica suture, which may have been reactivated during Mesozoic normal faulting. The reflection Moho at 28–35 km depth appears to truncate a N-dipping mantle structure, which may represent remnant structures from Tornquist Ocean closure or late-collisional compressional shear planes in the upper mantle. A contour map of these mantle reflections indicates a consistent northward dip, which is steepest where there is strong bending of the Caledonian deformation front. The thin-skinned character of the Caledonian deformation complex and the fact that N-dipping mantle reflections do not truncate the Moho indicate that the Baltica crust was not mechanically involved in the Caledonian collision and, therefore, escaped deformation in this area.  相似文献   
150.
An integrated geological study of the tectono-metamorphic evolution of the metamorphic complex of Beloretzk (MCB) which is part of the eastern Bashkirian mega-anticlinorium (BMA), SW Urals, Russia shows that the main lithological units are Neoproterozoic (Riphean and Vendian age) siliciclastic to carbonate successions. Granitic, syenitic and mafic intrusions together with subaerial equivalents comprise the Neo- and Mesoproterozoic magmatic rocks. The metamorphic grade ranges from diagenetic and very low grade in the western BMA to high-grade in the MCB. The N–S trending Zuratkul fault marks the change in metamorphic grade and structural evolution between the central and eastern BMA. Structural data, Pb/Pb-single zircon ages, 40Ar/39Ar cooling ages and the provenance signature of Riphean and Vendian siliciclastic rocks in the western BMA give evidence of Mesoproterozoic (Grenvillian) rifting, deformation and eclogite-facies metamorphism in the MCB and a Neoproterozoic (Cadomian) orogenic event in the SW Urals. Three pre-Ordovician deformation phases can be identified in the MCB. The first SSE-vergent, isoclinal folding phase (D1) is younger than the intrusion of mafic dykes (Pb/Pb-single zircon: 1350 Ma) and older than the eclogite-facies metamorphism. High P/low T eclogite-facies metamorphism is bracketed by D1 and the intrusion of the Achmerovo granite (Pb/Pb-single zircon: ≤970 Ma). An extensional, sinistral, top-down-to-NW directed shearing (D2) is correlated with the first exhumation of the MCB. E-vergent folding and thrusting (D3) occurred at retrograde greenschist-facies metamorphic conditions. The tremolite 40Ar/39Ar cooling age (718±5 Ma) of amphibolitic eclogite and muscovite 40Ar/39Ar cooling ages (about 550 Ma) of mica schists indicate that a maximum temperature of 500±50 °C was not reached during the Neoproterozoic orogeny. The style and timing of the Neoproterozoic orogeny show similarities to the Cadomian-aged Timan Range NW of the Polar Urals. Geochronological and thermochronological data together with the abrupt change in structural style and metamorphism east of the Zuratkul fault, suggest that the MCB is exotic with respect to the SE-margin of the East European Platform. Thus, the MCB is named the ‘Beloretzk Terrane’. Recognition of the ‘Beloretzk Terrane’ and the Neoproterozoic orogeny at the eastern margin of Baltica has important implications for Neoproterozoic plate reconstruction and suggests that the eastern margin of Baltica might have lain close to the Avalonian–Cadomian belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号