首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   19篇
  国内免费   116篇
地球物理   9篇
地质学   237篇
海洋学   7篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   15篇
  2012年   11篇
  2011年   11篇
  2010年   11篇
  2009年   4篇
  2008年   22篇
  2007年   13篇
  2006年   9篇
  2005年   9篇
  2004年   15篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   8篇
  1999年   6篇
  1998年   1篇
  1997年   11篇
  1996年   7篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
排序方式: 共有255条查询结果,搜索用时 0 毫秒
61.
张旗 《岩石学报》2006,22(12):3079-3084
王希斌等根据铙钹寨岩体恢复的原岩由亏损强烈的方辉橄榄岩、纯橄岩和弱亏损的二辉橄榄岩组成以及有豆荚状铬铁矿存在,认为铙钹寨岩体属于大洋岩石圈地幔,是蛇绿岩的成员;并且还根据岩体存在两种地幔橄榄岩组合进一步推断铙钹寨岩体“可能经历了洋内扩张(形成MOR型的地幔残余)和洋内俯冲两个阶段的演化过程”。我们认为,铙钹寨岩体是交代的地幔橄榄岩,它不大可能是蛇绿岩;铙钹寨岩体的特征比较接近大陆岩石圈地幔而非大洋岩石圈地幔;铬铁矿不是判别蛇绿岩的标志;不能根据岩体存在强烈亏损和弱亏损的两种橄榄岩而推断其形成于两种环境。  相似文献   
62.
The Aegean Sea area is thought to be an actively extending back-arc region, north of the present day Hellenic volcanic arc and north-dipping subduction zone in the Eastern Mediterranean. The area shows extensive normal faulting, ductile ‘extensional’ shear zones and extensional S-C fabrics throughout the islands that have previously been related to regional Aegean extension associated with slab rollback on the Hellenic Subduction Zone. In this paper, we question this interpretation, and suggest the Cenozoic geodynamic evolution of the Aegean region is associated with a Late Cretaceous–Eocene NE-dipping subduction zone that was responsible for continent-continent collision between Eurasia and Adria-Apulia/Cyclades. Exhumation of eclogite and blueschist facies rocks in the Cyclades and kyanite-sillimanite grade gneisses in the Naxos core complex have pressures that are far greater than could be accounted for purely by lithospheric extension and isostatic uplift. We identify four stages of crustal shortening that affected the region prior to regional lithospheric extension, herein called the Aegean Orogeny. This orogeny followed a classic Wilson cycle from early ophiolite obduction (ca. 74 Ma) onto a previously passive continental margin, to attempted crustal subduction with HP eclogite and blueschist facies metamorphism (ca. 54–45 ?Ma), through crustal thickening and regional kyanite – sillimanite grade Barrovian-type metamorphism (ca. 22–14 ?Ma), to orogenic collapse (<14 ?Ma). At least three periods of ‘extensional’ fabrics relate to: (1) Exhumation of blueschists and eclogite facies rocks showing tight-isoclinal folds and top-NE, base-SW fabrics, recording return flow along a subduction channel in a compressional tectonic setting (ca. 50–35 ?Ma). (2) Extensional fabrics within the core complexes formed by exhumation of kyanite- and sillimanite gneisses showing thrust-related fabrics at the base and ‘extensional’ fabrics along the top (ca. 18.5–14 ?Ma). (3) Regional ductile-brittle ‘extensional’ fabrics and low-angle normal faulting related to the North Cycladic Detachment (NCD) and the South(West) Cycladic Detachment (WCD) during regional extension along the flanks of a major NW–SE anticlinal fold along the middle of the Cyclades. Major low-angle normal faults and ductile shear zones show symmetry about the area, with the NE chain of islands (Andros, Tinos, Mykonos, Ikaria) exposing the NE-dipping NCD with consistent top-NE ductile fabrics along 200 ?km of strike. In contrast, from the Greek mainland (Attica) along the SE chain of islands (Kea, Kythnos, Serifos) a SW-dipping low-angle normal fault and ductile shear zone, the WCD is inferred for at least 100 ?km along strike. Islands in the middle of the Cyclades show deeper structural levels including kyanite- and sillimanite-grade metamorphic core complexes (Naxos, Paros) as well as Variscan basement rocks (Naxos, Ios). The overall structure is an ~100 ?km wavelength NW–SE trending dome with low-angle extensional faults along each flank, dipping away from the anticline axis to the NE and SW. Many individual islands show post-extensional large-scale folding of the low-angle normal faults around the domes (Naxos, Paros, Ios, Sifnos) indicating a post-Miocene late phase of E–W shortening.  相似文献   
63.
The eastern end of the Haylayn massif exposes a complex paleoridge structure interpreted as the tip of a northwestward propagating segment (Nicolas et al., this issue). The area, revisited from a petrostructural and geochemical viewpoint, offers the most documented exposures of the association of olivine gabbros and gabbronorites in Oman (Juteau et al., 1988). Gabbronorites were injected while the main gabbro unit was deforming in the magmatic state. Both units do not differ chemically, except for the SiO2 enrichment of the orthopyroxene-rich gabbros relative to olivine-gabbro. In addition, they display the same trace element signature, which implies the same parent magma for both units. The extension of the stability field of orthopyroxene is assigned to increase of oxygen fugacity due to hydration. The source of hydration is the ridge axis hydrothermal circulation, suggesting hydrothermal/magma interaction at temperatures above the gabbro solidus. The distribution of gabbronorites at the scale of the entire ophiolite suggests a relation with ridge tectonics where high-T conditions of hydrothermal-magmatic interaction are met. Such conditions are met when propagating segments rotate the structures of the dying magma chamber.  相似文献   
64.
印度南部和乌拉尔南部都有隐晶质菱镁矿产出,这两处矿床的产出地质环境相似,在矿物学和地球化学上具有广泛的相似性。印度南部的菱镁矿矿化主要与超镁铁质侵入杂岩体有关,并形成了部分已受变质的火山沉积地层。超镁铁质侵入杂岩体由纯橄岩,橄榄岩,辉石岩,辉长岩及它们的变质产物组成。在乌拉尔地区,菱镁矿床位于一个蛇绿岩带上的超镁铁岩地体中。隐晶质菱镁矿就以网脉状产出于超镁铁质岩地体上部的风化带中。印度和乌拉尔两个地区的矿床中的矿物组合都有菱镁矿,石英,方解石和白云石,但在印度南部的矿区中还含有滑石和菱铁矿。两个地区的菱镁矿矿石的质量都很好,所有的样品的主要成分都为菱镁矿(73~96%),而方解石(1~3%),白云石(0~7%),菱铁矿(0~2%),石英(0~5%)和滑石(O~2%)都只是次要矿物。次生的白云石和菱铁矿使一些矿石含有较高的CaO(最高达2.6%)和FeO(最高达1.6%),石英和滑石等矿物则使矿石中的SiO2较高(5—8%)。滑石指示了低温成因,它的出现说明两个矿区的菱镁矿可能都是内生或外生的成矿流体在上升或下降的过程中在开放裂隙中沉淀而成的。本文研究表明,全球性的超镁铁岩中菱镁矿成矿事件与蛇绿岩带有关,这对菱镁矿的勘探有指导意义。  相似文献   
65.
The Lower Ordovician Løkken ophiolite fragment shows a tripartite subdivision of its thick volcanic sequence into: (1) an Upper Volcanic Member (UVM) of transitional MORB/IAT character, comprising basalts or, in a related, thrust-bounded sequence, a bimodal basalt-rhyolite assemblage; (2) a Middle Volcanic Member (MVM) derived from widely variable, generally MORB-related magmas; and (3) a Lower Volcanic Member (LVM) of N-type MORB basalts which locally passes into an underlying sheeted dyke complex. The UVM and LVM were fed from relatively deep-seated magma chambers, and lavas were erupted at moderate flow rates to form predominantly pillow lavas. The whole sequence is interpreted as having formed in a marginal basin setting. The MVM is characterized by abundant voluminous sheet basalts thought to have been erupted at high flow rates. The volcanites had their source, through extensive dyke swarms, in high-level magmas which intruded the sheeted dyke complex and parts of the LVM, possibly in a near-axial seamount setting. The magmas differentiated to form plagiogranitic melts, with a wide range of conjunctive, mafic to intermediate cumulates. This plutonic assemblage, possibly in crystal mush form, was subsequently intruded by new, mafic magma, leading partly to large-scale remelting or assimilation of cumulus phases. These processes are reflected in the MVM by common hybrid flows, as well as local intermediate lavas having the geochemical characteristics of cumulates, erupted during a period of intense faulting. Major tapping of the primary, mafic magma occurred toward the end of the period of MVM volcanism. A predominance of voluminous, apparently fluid, massive flows in the MVM is mainly ascribed to the shallow depth of magma reservoirs.  相似文献   
66.
Accreted igneous assemblages in orogenic belts maybe divided into three types depending on whether they derive from seamounts, ocean ridges or subduction-related ophiolites. Seamount type basalts are associated with shallow water sediments—mostly reefoidal limestones. Ocean ridge type basalts are generally overlain by pelagic cherts. Subduction-related ophiolitic eruptives, often underlain by gabbroic and ultramafic rocks, are associated with hemipelagic mudstones. The age of such diverse eruptive lithologic assemblages reflects the time taken for them to have traveled from their locus of generation to their place of accretion at a continental margin. This relationship has been established for each type of accretionary complex, examples being taken mostly from Japan and the western Pacific rim in order to represent evolutionary processes at a typical active plate margin. In general, the seamount types are older, ridge types are of intermediate age, and the ophiolitic types are by far the youngest, usually close to zero age. Seamount type basalts are accreted by shallower scraping of the seamount's sediment apron together with fragments of seamount basalt, ridge type, by peeling due to permeability contrast, and the ophiolitic types by deeper scraping as a consequence of an inflected temperature gradient. Accordingly, it is concluded that the ophiolitic rocks are generated close to the trench and may be accreted as a result of ridge subduction.  相似文献   
67.
The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris peridotites range from fertile plagioclase lherzolites to depleted harzburgites. Abundances of Al2O3 and CaO show well-defined inverse linear correlations with MgO, suggesting that the Othris peridotites formed as residua from variable degrees of partial melting.

Peridotites from the Fournos Kaïtsa and western Katáchloron sub-massifs are similar to abyssal peridotites and can be explained by a multistage model with some melting in the garnet stability field followed by moderate degrees of anhydrous near-fractional melting in the spinel stability field. In contrast, the peridotites from the Metalleio, Eretria, and eastern Katáchloron sub-massifs, and the Vourinos ophiolite are highly depleted and have extremely low concentrations of Al2O3 and heavy rare earth elements. These peridotites have enriched light REE contents compared to the middle REE. These residua are best modelled by hydrous melting due to a flux of slab-derived fluid to the mantle wedge during melting.

The occurrence of both styles of melting regimes within close spatial and temporal association in the same ophiolite is explained by intra-oceanic thrusting and forced subduction initiation at (or near) a mid-ocean ridge. Thus, the Othris Ophiolite, and probably Tethyan-type ophiolites in general, represent a transient phase of plate tectonic reorganisation rather than quasi-steady state plate tectonics.  相似文献   

68.
新疆中天山南缘库米什地区的榆树沟和铜花山蛇绿混杂岩包括地幔橄榄岩,辉石岩、辉长岩、斜长岩等堆晶岩,辉绿岩墙和基性熔岩,以及上部的硅质岩等。岩石地球化学研究表明,蛇绿岩的岩石类型来自MORB型和SSZ型两种构造背景。蛇绿岩及有关岩石的锆石U-Pb同位素年代学的研究表明,与中天山南缘洋盆扩张和闭合有关的事件至少可以分为4期: (1)奥陶纪-志留纪的洋盆形成事件,证据来自蛇绿岩斜长花岗岩和斜长岩,两者的年龄分别为435.1±2.8Ma、439.3±1.8Ma;(2)志留纪的岛弧岩浆作用,获得岛弧火山岩英安岩年龄422.1±2.6Ma 和花岗闪长岩年龄423.1±1.8Ma;(3)泥盆纪的剪切变形和糜棱岩化变质作用,由于板块斜向俯冲和碰撞作用,产生大规模的走滑作用和与之伴生的由剪切作用形成的糜棱岩,糜棱岩的形成年龄为402.8±1Ma,为早泥盆世;(4)俯冲碰撞后的造山带伸展阶段的岩浆作用,在俯冲碰撞作用之后发生与垂直主受力面张裂作用伴生岩浆作用,获得石英正长斑岩294.8±1.2Ma年龄,即晚石炭世。 此外,认为榆树沟蛇绿岩北部出露的麻粒岩是一个很特殊的构造岩块,岩石的锆石中普遍存在500~1800Ma的老核,表明其原岩很复杂,不属于蛇绿岩的组合 。  相似文献   
69.
铬铁矿贺根山蛇绿岩带地处西伯利亚板块和华北板块的汇聚部位,该带出露中国北方最大的超基性岩体群,大小有超过超过30个超基性岩块,其中自西向东分布的朝根山,贺根山,崇根山,乌兹尼黑为最大的蛇绿岩块。与超基性岩关系最密切的矿产莫过于铬铁矿,数年来很多学者针对贺根山蛇绿岩的含矿性做了大量工作(白文吉等1993,1995; Miao Laicheng et al.,2008;段明,2009,2015;黄竺,2015;王成,2016),该带分布的铬铁矿床(点)众多,有代表性矿床(点)为赫根敖拉、733和3756,然而能达到工业开采的矿床只有3756。近些年在该地区的找矿勘查工作未取得突破,笔者认为很多原因在于该区覆盖面积太大,找矿靶区定位不准以及对隐伏的矿体勘查力度不够。2013-2015年天津地质调查中心在2009~2011年度新飞的航磁资料基础之上对该区进行了航磁异常查证与评价研究工作,对该区的成矿潜力与找矿方向提出了心得认识。  相似文献   
70.
The Qinling Mountains in Central China mark a gigantic composite orogenic belt with a complex tectonic evolution involving multiple phases of rifting and convergence. This belt separates the North China and South China Blocks and consists of the South and North Qinling terranes separated by the Shangdan suture. The suture is marked by the Grenvillian Songshugou ophiolite along the southern margin of the North Qinling terrane, which is key to understanding the Proterozoic tectonic evolution of the belt. The ophiolite consists of highly metamorphosed ultramafic and mafic rocks. Three groups of meta-basalts are present: group 1 rocks are LREE depleted and have a MORB compositional affinity. Their low Ta/Yb ratios (<0.1) are consistent with high degrees of partial melting of a depleted asthenospheric mantle. Rocks of group 2 have higher TiO2 (1.63–2.08 wt%) and Ta/Yb ratios (>0.12), and display slight enrichment of LREE, suggesting that the original magmas were derived from a depleted mantle source mixed with some enriched material. Samples from group 3 are enriched in LREE and other incompatible elements (Ti, Zr, Ta, Nb), suggesting derivation from an enriched mantle source, possibly a plume. All the basalts have high εNd(t) (+4.2 to +6.9), variable εSr(t) and high 207Pb/204Pb and 208Pb/204Pb ratios for given 206Pb/204Pb ratios. These characteristics are compatible with formation at a mid-ocean ridge system above an anomalous Dupal mantle region. The mafic rocks have a Sm–Nd whole-rock isochron age of 1030 ± 46 Ma.The Songshugou ophiolite was emplaced onto the southern margin of the North Qinling terrane, an active continental margin from the Meso-Proterozoic to Neo-Proterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号