首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14953篇
  免费   2406篇
  国内免费   4445篇
测绘学   2045篇
大气科学   2924篇
地球物理   3241篇
地质学   6093篇
海洋学   2891篇
天文学   1377篇
综合类   1324篇
自然地理   1909篇
  2024年   61篇
  2023年   168篇
  2022年   496篇
  2021年   544篇
  2020年   748篇
  2019年   867篇
  2018年   644篇
  2017年   759篇
  2016年   755篇
  2015年   892篇
  2014年   867篇
  2013年   1033篇
  2012年   972篇
  2011年   952篇
  2010年   775篇
  2009年   901篇
  2008年   998篇
  2007年   1184篇
  2006年   1171篇
  2005年   1026篇
  2004年   852篇
  2003年   707篇
  2002年   651篇
  2001年   477篇
  2000年   609篇
  1999年   578篇
  1998年   449篇
  1997年   318篇
  1996年   263篇
  1995年   202篇
  1994年   180篇
  1993年   170篇
  1992年   145篇
  1991年   90篇
  1990年   55篇
  1989年   76篇
  1988年   42篇
  1987年   34篇
  1986年   34篇
  1985年   16篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1954年   4篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
531.
通过分析由ERA-Interim气象再分析资料积分方法得到的天顶对流层总延迟随高程变化的规律,提出一种基于垂直剖面函数的天顶对流层延迟(ZTD)插值算法。该算法以ZTD的垂直分布规律为基础,通过垂直剖面函数实现ZTD在高程方向上的精准投影延拓,可以避免因高差较大造成的空间内插结构畸形。采用IGS站提供的高精度对流层产品进行实验验证表明,该算法相对于传统算法能够有效提高ZTD改正值的精度,尤其在高差超过1 km的情况下,相对于反距离加权法精度提升了96%,相对于空间回归法精度提升了79%。  相似文献   
532.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   
533.
The vegetational history of the penultimate glacial period, Marine Isotope Stage (MIS) 6 (c. 185–135 ka), has remained relatively unexplored. Here we present a new record from the Ioannina basin, north‐west Greece, which constitutes the highest‐resolution terrestrial pollen record for this interval produced to date. It shows that the vegetation history of MIS 6 in this region can be divided into two parts: an early period (185–155 ka) with pronounced oscillations in tree population extent, and a later period (155–135 ka) with much smaller tree populations and subdued oscillations. This pattern is analogous to the MIS 3/MIS 2 division during the last glacial in the same sequence, although the early part of MIS 6 had larger Pinus populations and fewer temperate trees relative to the equivalent interval in MIS 3. This implies cooler and wetter conditions, which is somewhat counterintuitive given the high summer insolation during MIS 6e, but is in line with other palaeoclimatic evidence from the Mediterranean. Comparison with North Atlantic records suggests that despite the absence of pronounced iceberg discharges during MIS 6, North Atlantic millennial‐scale variability had a significant downstream impact on tree populations in north‐west Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
534.
In this work, the possible exploitation of fiber-reinforced composites in the context of maritime transportation of compressed natural gas (CNG) is investigated. In addition to a more conventional steel configuration, two different fiber materials, carbon and glass, are considered as construction materials for pressure vessels (PVs) to be stored on board ships, with thickness optimized by FEM analysis.The considered scenario is represented by the transportation of CNG from an offshore well to a terminal on shore. Fleets of ships carrying CNG in pressure vessels manufactured with the investigated materials are generated by means of a ship synthesis model (SSM) software and compared on the basis of technical and economical indicators.The choice of the construction material influences considerably the weight of the PVs, which represent a major item of total ship weight and reflects directly on the general transport performances in terms of resistance, seakeeping and reliability in the service. On the other hand, capital as well as operating expenditures are considerably affected by the choice. When exploring the design space, the ship synthesis model is able, at a preliminary stage of the design, to account for the various technical and economical aspects, their implications and relationships. Results are presented of computations carried out in a specific case, identified by the annual gas production and other characteristics of the well terminal and a cruising route for the ships. The comparison is carried out on the basis of the cost per transported unit of gas and of the percentage of success in the transportation process. The computations show that the choice of the PV material has a key influence on the results in terms of optimal number, dimensions and speed of the ships.  相似文献   
535.
We study the scale dependence of the saturated hydraulic conductivity Ks through the effective porosity ne by means of a newly developed power‐law model (PLM) which allows to use simultaneously measurements at different scales. The model is expressed as product between a single PLM (capturing the impact of the dominating scale) and a characteristic function κ? accounting for the correction because of the other scale(s). The simple (closed form) expression of the κ?‐function enables one to easily identify the scales which are relevant for Ks. The proposed model is then applied to a set of real data taken at the experimental site of Montalto Uffugo (Italy), and we show that in this case two (i.e. laboratory and field) scales appear to be the main ones. The implications toward an important application (solute transport) in Hydrology are finally discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
536.
537.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
538.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
539.
The paper offers an analytical determination of the hydraulic properties of an unsaturated soil with reference to its retention curve, which describes the relationship between the volumetric water content and capillarity through matric suction. The analysis combines a particulate approach focused on the physics at the pore scale, including microstructural aspects, with a probabilistic approach where the void space and grain size are considered as random variables. In the end, the soil water characteristic curve of an unsaturated granular medium along a drying path can be derived analytically based on the sole information of particle size distribution. The analysis hinges on the tessellation of a wet granular system into an assemblage of tetrahedral unit cells revealing a pore network upon which capillary physics are computed with respect to pore throat invasion by a non-wetting fluid with evolving pendular capillary bridges. The crux of the paper is to pass from particle size probability distribution to a matching void space distribution to eventually reveal key information such as void cell and solid volume statistics. Making reasonable statistically based assumptions to render calculations tractable, the water retention curve can be readily constructed. Model predictions compare quite favourably with experimental data available for actual soils, especially in the high saturation range. Having a sound scientific basis, the model can be made amenable to address a variety of soils with a wider range of particle sizes.  相似文献   
540.
This paper reports improvements to algorithms for the simulation of 3-D hydraulic fracturing with the Generalized Finite Element Method (GFEM). Three optimizations are presented and analyzed. First, an improved initial guess based on solving a 3-D elastic problem with the pressure from the previous step is shown to decrease the number of Newton iterations and increase robustness. Second, an improved methodology to find the time step that leads to fracture propagation is proposed and shown to decrease significantly the number of iterations. Third, reduced computational cost is observed by properly recycling the linear part of the coupled stiffness matrix. Two representative examples are used to analyze these improvements. Additionally, a methodology to include the leak-off term is presented and verified against asymptotic analytical solutions. Conservation of mass is shown to be well satisfied in all examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号