首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2230篇
  免费   456篇
  国内免费   1080篇
测绘学   58篇
大气科学   508篇
地球物理   398篇
地质学   1043篇
海洋学   1412篇
天文学   24篇
综合类   144篇
自然地理   179篇
  2024年   13篇
  2023年   39篇
  2022年   103篇
  2021年   122篇
  2020年   143篇
  2019年   139篇
  2018年   136篇
  2017年   143篇
  2016年   128篇
  2015年   115篇
  2014年   167篇
  2013年   221篇
  2012年   134篇
  2011年   144篇
  2010年   111篇
  2009年   178篇
  2008年   203篇
  2007年   198篇
  2006年   218篇
  2005年   181篇
  2004年   125篇
  2003年   151篇
  2002年   97篇
  2001年   86篇
  2000年   89篇
  1999年   56篇
  1998年   53篇
  1997年   41篇
  1996年   30篇
  1995年   34篇
  1994年   41篇
  1993年   16篇
  1992年   23篇
  1991年   17篇
  1990年   15篇
  1989年   14篇
  1988年   16篇
  1987年   5篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有3766条查询结果,搜索用时 484 毫秒
111.
In situ seismic attenuationQ−1logs are derived from borehole velocity profiles and reveal sharp boundaries between morphologies of the extrusive volcanic layers in intermediate- and slow-spreading oceanic crust.Q−1logs are calculated from the scattering attenuation associated with vertical velocity heterogeneity in Ocean Drilling Program Holes 504B and 896A and in Hole 395A, located in 5.9–7.3 Ma crust on the Pacific and Atlantic plates, respectively. Our results strongly tie crustal properties to seismic measurables and observed geological structures: we find that the scattering attenuation can be used to identify the extrusive volcanic sequence because it is closely related to changes in the degree of vertical heterogeneity. We interpret a distinct decrease in the Q−1log at the transition below the extrusive volcanic layer to correspond with the seismic layer 2A/2B boundary. The boundary is located at 465 m depth below the sea floor in both Hole 395A and 504B, although this is likely to be a coincidence of the sediment thickness at these sites. Layer 2A is estimated to be approximately 150 m thick in Hole 504B and > 300 m thick in Hole 395A. Cyclic sequences of high-porosity pillows and low-porosity massive units in the uppermost 100 m of volcanics in Hole 395A result in large velocity heterogeneities which cause > 5 times more attenuation in this layer than in Hole 504B. In Hole 896A, by contrast, fewer pillows, more massive flows, and a greater volume of carbonate veins decrease the velocity heterogeneity and attenuation significantly over only 1 km distance from Hole 504B. We conclude that the attenuation in the extrusive volcanics of the ocean crust is largely controlled by variation in local heterogeneity and morphology as well as by subsequent hydrothermal alteration. The observed differences inQ−1profiles and layer 2A thickness at these sites may be attributed to variations in the volume and duration of volcanic activity at mid-ocean spreading centers for these Pacific and Atlantic ridge segments.  相似文献   
112.
Abstract A series of paleogeographic maps of the Japanese Islands, from their birth at ca 750–700 Ma to the present, is newly compiled from the viewpoint of plate tectonics. This series consists of 20 maps that cover all of the major events in the geotectonic evolution of Japan. These include the birth of Japan at the rifted continental margin of the Yangtze craton ( ca 750-700 Ma), the tectonic inversion of the continental margin from passive to active ( ca 500 Ma), the Paleozoic accretionary growth incorporating fragments from seamounts and oceanic plateaux ( ca 480-250 Ma), the collision between Sino-Korea and Yangtze (250–210 Ma), the Mesozoic to Cenozoic accretionary growth (210 Ma-present) including the formation of the Cretaceous paired metamorphic belts (90 Ma), and the Miocene back-arc opening of the Japan Sea that separated Japan as an island arc (25-15 Ma).  相似文献   
113.
Using the data of ECMWF (European Center for Medium-range Weather Forecasts) to undertake composite diagnoses of 16 explosive cyclones occurring at the Atlantic and the Pacific Oceans,it is found that there are a lot of obvious discrepancies on the basic fields between these strong and weak explosive cyclones.The major reasons why the explosive cyclones over the Atlantic are stronger than those over the Pacific Ocean are that the non-zonal upper jet and the low-level warm moist flow over the Atlantic are stronger.The non-zonal upper jet offers stronger divergence,baroclinicity and baroclinic instability fields for explosive cyclones.Anticyclonic curvature at the high level of strong explosive cyclones is easy to make the inertia-gravitational wave developing at the moment of northward transfer of energy and stimulate the cyclones deepening quickly.Warm advection and diabatic heating can cause the upper isobaric surface lifting,as a result,the anticyclone curvature of cyclones enlarges,and wave energy develops easily as well.The most powerful period of the development of explosive cyclones is just the time when the positive vorticity advection center is located over the low vortex.At the upper level,when the distribution of potential vorticity contours changes suddenly from rareness to denseness,and the large values of the potential vorticity both in the west and north sides of cyclones extend downwards together,then cyclones are easy to explosively develop.The formation of strong explosive cyclones is closely related with the non-zonality of upper jet and the anticyclonic curvature.  相似文献   
114.
The middle–late Campanian was marked by an increase in the bioprovinciality of calcareous microfossil assemblages into distinct Tethyan, Transitional, and Austral Provinces that persisted to the end of the Maastrichtian. The northwestern Australian margin belonged to the Transitional Province and the absence of key Tethyan marker species such as Radotruncana calcarata and Gansserina gansseri has led petroleum companies operating in the area to use the locally developed KCCM integrated calcareous microfossil zonation scheme. The KCCM zonation is a composite scheme comprising calcareous nannofossil (KCN), planktonic foraminiferal (KPF) and benthonic foraminiferal (KBF) zones. This paper presents the definitions and revisions of Zones KCCM8–19, from the highest occurrence (HO) of Aspidolithus parcus constrictus to the lowest occurrence (LO) of Ceratolithoides aculeus, and builds on our previous early–late Maastrichtian study. The presence of a middle–upper Campanian disconformity is confirmed by microfossil evidence from the Vulcan Sub-basin, Exmouth and Wombat plateaus, and the Southern Carnarvon Platform. In the Vulcan Sub-basin and on the Exmouth Plateau (ODP Hole 762C) the hiatus extends from slightly above the LO of common Rugoglobigerina rugosa to above the LO of Quadrum gothicum. On the Wombat Plateau (ODP Hole 761B) it spans from above the LO of Heterohelix semicostata to above the LO of Quadrum gothicum; and in the Southern Carnarvon Platform the disconformity has its longest duration from above the HO of Heterohelix semicostata to above the LO of Quadrum sissinghii. A significant revision of the events which define Zones KCCM18 and 19 was necessary owing to the observation that the LO of Ceratolithoides aculeus occurs below the HOs of Archaeoglobigerina cretacea and Stensioeina granulata incondita and the LO of common Rugoglobigerina rugosa. In the original zonation these events were considered to be coincident.  相似文献   
115.
We have analyzed the stable oxygen isotopic composition of two Porites corals from the Chagos Archipelago, which is situated in the geographical center of the Indian Ocean. Coral δ18O at this site reliably records temporal variations in precipitation associated with the Intertropical Convergence Zone (ITCZ). Precipitation maxima occur in boreal winter, when the ITCZ forms a narrow band across the Indian Ocean. The Chagos then lies within the center of the ITCZ, and rainfall is strongly depleted in δ18O. A 120-yr coral isotopic record indicates an alternation of wet and dry intervals lasting 15 to 20 yr. The most recent 2 decades are dominated by interannual variability, which is tightly coupled to the El Niño-Southern Oscillation (ENSO). This is unprecedented in the 120 yr of coral record. As the ITCZ is governed by atmospheric dynamics, this provides evidence of a major change in the coupled ENSO-monsoon system.  相似文献   
116.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   
117.
应用地面点与线路中线相对关系的统一数学模型,使用CASIO fx-4800P程序型计算器编制的适合野外测设线路各种复合曲线(包括直线、缓和曲线、圆曲线的任意组合)的实用程序。  相似文献   
118.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents ((REE), LREE/HREE ratio and cerium anomaly (бCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio >1, бCe (0.85, (REE (400 μg/g, LREE/HREE ratio (4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio <1, бCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio (6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or (э)Nd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to (э)Nd values. Terrigenous clay minerals of type I with the (э)Nd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type II with the (э)Nd values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with (э)Nd values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with (э)Nd values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   
119.
120.
Midwestern states have invested extensively in grasslands for wildlife conservation, yet these public lands make up a minority of grassland habitat. How effective are public grasslands, relative to private lands, for conserving native songbird populations? I compare private and public lands in southern Minnesota using bird survey data from Conservation Reserve Program (CRP) fields and public lands and assessing fragmentation in a GIS. Bird abundance and diversity were greater on CRP lands. Vegetation composition, field isolation, and field size appear to explain differences in bird counts. Land cover data show that grassland habitat on public lands is scarce and widely scattered. The CRP provides more, and here better, habitat for grassland birds. Funding partly explains this disparity. Trends in farm set‐aside program rules and distribution, which can be vary greatly over time, will strongly influence the success or failure of biodiversity conservation in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号