首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6978篇
  免费   1693篇
  国内免费   2810篇
测绘学   101篇
大气科学   1996篇
地球物理   1703篇
地质学   5006篇
海洋学   917篇
天文学   31篇
综合类   373篇
自然地理   1354篇
  2024年   36篇
  2023年   124篇
  2022年   286篇
  2021年   356篇
  2020年   357篇
  2019年   449篇
  2018年   377篇
  2017年   358篇
  2016年   340篇
  2015年   381篇
  2014年   496篇
  2013年   545篇
  2012年   498篇
  2011年   469篇
  2010年   425篇
  2009年   583篇
  2008年   505篇
  2007年   537篇
  2006年   581篇
  2005年   440篇
  2004年   393篇
  2003年   381篇
  2002年   362篇
  2001年   324篇
  2000年   305篇
  1999年   263篇
  1998年   222篇
  1997年   204篇
  1996年   199篇
  1995年   119篇
  1994年   126篇
  1993年   95篇
  1992年   75篇
  1991年   71篇
  1990年   58篇
  1989年   40篇
  1988年   25篇
  1987年   16篇
  1986年   10篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   8篇
  1981年   6篇
  1979年   5篇
  1978年   1篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Abstract. The caprellid (Crustacea: Amphipoda) community associated with the alga Cystoseira usneoides (L.) Roberts 1967 was studied on a spatial scale in relation to the influence of environmental factors on the coast of Ceuta (North Africa) using multivariate analyses. Twenty-two stations were sampled and five environmental factors were tested (hydrodynamics, silting, suspended organic matter, organic matter in silt and suspended solids). The spatial distribution of the caprellid community reflected the physico-chemical conditions of the coast. Phtisica marina Slabber 1769 was the only species present at the stations of the harbour of Ceuta, characterised by the lowest values of hydrodynamics and the highest values of silting, suspended organic matter and suspended solids. The most exposed stations (high hydrodynamics and low values of silting, dissolved organic matter and suspension solids) were mainly dominated by Caprella danilevskii Czerniavskii 1868 and C. penantis Leach 1814. These two species have developed a "parallel" posture that enables them to attach strongly to the substratum and thus inhabit areas subjected to heavy exposure or strong currents. Caprella acanthifera Leach 1814 and Pseudoprotella phasma (Montagu 1804) preferred stations characterised by moderate values of silting and suspended solids, such as those located in the coastal areas in front of the city of Ceuta, but these species were not found at the most stressed harbour stations.  相似文献   
72.
73.
74.
75.
A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.  相似文献   
76.
The sandy quartzose parts of the Utsira Formation, the Middle Miocene to mid Pliocene Utsira Sand, extends north–south along the Viking Graben near the UK/Norwegian median line for more than 450 km and 75–130 km east–west. The Utsira Sand is located in basin-restricted seismic depocentres, east of and below prograding sandy units from the Shetland Platform area with Hutton Sands. The Utsira Sand reaches thicknesses up to ca. 300 m in the southern depocentre and 200 m in the two northern depocentres with sedimentation rates up to 2–4 cm/ka. Succeeding Plio–Pleistocene is divided into seismic units, including Base Upper Pliocene, Shale Drape, Prograding Complex and Pleistocene. The units mainly consist of clay, but locally minor sands occur, especially at toes of prograding clinoforms (bottom-set sands) and in the Pleistocene parts, and the total thickness covering the Utsira Sand is in most places more than 800 m, but thins towards the margins.  相似文献   
77.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   
78.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   
79.
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号