首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2250篇
  免费   141篇
  国内免费   127篇
测绘学   43篇
大气科学   74篇
地球物理   355篇
地质学   902篇
海洋学   538篇
天文学   16篇
综合类   46篇
自然地理   544篇
  2024年   8篇
  2023年   19篇
  2022年   33篇
  2021年   47篇
  2020年   53篇
  2019年   76篇
  2018年   61篇
  2017年   89篇
  2016年   106篇
  2015年   51篇
  2014年   84篇
  2013年   362篇
  2012年   80篇
  2011年   84篇
  2010年   94篇
  2009年   104篇
  2008年   148篇
  2007年   122篇
  2006年   115篇
  2005年   89篇
  2004年   71篇
  2003年   67篇
  2002年   73篇
  2001年   53篇
  2000年   63篇
  1999年   48篇
  1998年   37篇
  1997年   36篇
  1996年   37篇
  1995年   30篇
  1994年   36篇
  1993年   21篇
  1992年   14篇
  1991年   15篇
  1990年   9篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   8篇
  1985年   16篇
  1984年   15篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1954年   1篇
排序方式: 共有2518条查询结果,搜索用时 15 毫秒
71.
The serpentinites and associated chromitite bodies in Tehuitzingo (Acatlán Complex, southern Mexico) are in close relationship with eclogitic rocks enclosed within a metasedimentary sequence, suggesting that the serpentinites, chromitites and eclogitic rocks underwent a common metamorphic history.Primary chromites from the chromitite bodies at Tehuitzingo are of refractory-grade (Al-rich) and have a chemical composition similar to that expected to be found in an ophiolitic environment. The chromite grains in chromitites and serpentinites are systematically altered to ‘ferritchromite’. The alteration trend is usually characterized by a decrease in the Al, Mg and Cr contents coupled by an increase in Fe3+ and Fe2+.The Tehutizingo chromitites have low Platinum Group Elements (PGE) contents, ranging from 102 to 303 ppb. The chondrite-normalized PGE patterns are characterized by an enrichment in the Ir-subgroup elements (IPGE=Os, Ir, Ru) relative to the Pd-subgroup elements (PPGE=Rh, Pt, Pd). In addition, all chromitite samples display a negative slope from Ru to Pd [(Os+Ir+Ru)/(Pt+Pd)=4.78−14.13]. These patterns, coupled with absolute PGE abundances, are typical of ophiolitic chromitites elsewhere. Moreover, all the analyzed samples exhibit chondrite-normalized PGE patterns similar to those found for non-metamorphosed ophiolitic chromitites. Thus, the PGE distribution patterns found in the Tehuitzingo chromitites have not been significantly affected by any subsequent Paleozoic high-pressure (eclogite facies) metamorphic event.The chondrite-normalized PGE patterns of the enclosing serpentinites also indicate that the PGE distribution in the residual mantle peridotites exposed in Tehuitzingo was unaffected by high-pressure metamorphism, or subsequent hydrothermal alteration since the serpentinites show a similar pattern to that of partially serpentinized peridotites present in mantle sequences of non-metamorphosed ophiolites.Our main conclusion is that the chromitites and serpentinites from Tehuizingo experienced no significant redistribution (or concentration) of PGE during the serpentinization process or the high-pressure metamorphic path, or during subsequent alteration processes. If any PGE mobilization occurred, it was restricted to individual chromitite bodies without changing the bulk-rock PGE composition.Our data suggest that the Tehuitzingo serpentinites and associated chromitites are a fragment of oceanic lithosphere formed in an arc/back-arc environment, and represent an ophiolitic mantle sequence from a supra-subduction zone, the chemical composition of which remained essentially unchanged during the alteration and metamorphic events that affected the Acatlán Complex.  相似文献   
72.
Thirteen new species referable to four genera, of which one is new, from the Cretaceous of Russia and Mongolia are established herein and assigned to the family Pelecinidae. Among the four genera, Protopelecinus gen. nov., including four new species, is referred to the subfamily Pelecininae, while Iscopinus Kozlov, including three new species, Eopelecinus Zhang, Rasnitsyn and Zhang, including five new species, and Scorpiopelecinus laetus sp. nov. are assigned to the subfamily Iscopininae. Of these new taxa, eight, namely Protopelecinus regularis, P. furtivus, Iscopinus simplex, ?I. suspectus, Eopelecinus exquisitus, E. scorpioideus, E. rudis and Scorpiopelecinus laetus, are from the Lower Cretaceous Zaza Formation of Baissa, Transbaikalia, Russia; two, E. minutus and E. fragilis, are from the basal Lower Cretaceous Tsagan-Tsab Formation of Khutel-Khara, Mongolia; two, P. dubius and P. deformis, are from the Lower Cretaceous (Aptian?) of Bon Tsagan, Mongolia; and one, I. separatus, is from the Upper Cretaceous (Cenomanian) Ola Formation of Obeshchayushchiy, Russia. A key to fossil pelecinid wasps is provided and a morphological analysis shows that the Pelecinidae might be paraphyletic with respect to the Proctotrupidae. The Chinese insect fauna from both the Yixian and Laiyang formations is dominated by Eopelecinus and Sinopelecinus whereas the Siberian + Mongolian fauna from the Zaza and Tsagan-Tsab formations is dominated by Eopelecinus and Iscopinus. Hence, Eopelecinus is common to both. The differences between the two faunas are likely to be the result of geographical variation in populations.  相似文献   
73.
Nickel speciation in a nickel hyperaccumulating plant (Sebertia acuminata) and its associated soil of southern New Caledonia was studied using various analytical methods. The soil is formed of iron oxides (goethite, hematite), which contain almost all the nickel. The available nickel is probably linked to the organic matter in the litter. Sebertia acuminata, acts as a nickel pump, and concentrates the metal in its leaves. It partitions nickel and silica; nickel is concentrated in the cells (probably in the vacuoles) as organometallic complexes, whereas silica forms the framework of the cells, and the phytolithes. A thorough study of these plants seems essential in order to define the soil–plant relations, and to propose appropriate ways for ecological restoration. To cite this article: N. Perrier et al., C. R. Geoscience 336 (2004).  相似文献   
74.
75.
76.
77.
This study was carried out in the Cuenca de la Independencia, a semi-arid basin in Central Mexico. The objective is to describe the main features of a groundwater flow regime under natural conditions, based on groundwater discharge manifestations. Information obtained from paleoecological, paleontological, archaeological and historical data suggests that, prior to heavy development (starting in the 1950s), the hydrogeologic regime was characterized by a larger groundwater availability in a more humid and colder climate. Manifestations associated to groundwater discharges are springs, lagoons, wetlands, saline soils, chalcedony deposits, phreatophytes, thermalism, and artesianism. The different types of manifestations and their position in the basin indicate the influence of groundwater flow systems hierarchically nested, forming concentric zones at ground level. The groundwater flow regime corresponds to a classical gravity-induced flow system with generation of local, intermediate and regional patterns. Integrating several types of data to establish the flow geometry and its dynamics has proven a useful tool to increase understanding of the original groundwater regimes. This approach can also be applied in other over-exploited semi-arid basins.  相似文献   
78.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
79.
Laguerre  Michel S. 《GeoJournal》2005,64(1):41-49
This paper briefly reviews the sociological literature on the “New” Chinatown phenomenon stressing its structural location vis-à-vis the “Old” Chinatown and the homeland. It defines the New Chinatown as a panethnopolis, that is a global neighborhood with a majority population of Chinese immigrants and of other ethnic groups of mostly Asian descent. It analyzes more particularly the formation, development, and integration of San Francisco’s Richmond District’s New Chinatown into both the city where it is located and the network of transglobal sites to which it belongs. It provides an interpretation of the New Chinatown as a cultural enclave within the context of globalization theory.  相似文献   
80.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号