首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11077篇
  免费   2656篇
  国内免费   440篇
测绘学   179篇
大气科学   26篇
地球物理   10898篇
地质学   1575篇
海洋学   98篇
天文学   13篇
综合类   937篇
自然地理   447篇
  2024年   8篇
  2023年   88篇
  2022年   238篇
  2021年   400篇
  2020年   345篇
  2019年   399篇
  2018年   403篇
  2017年   399篇
  2016年   274篇
  2015年   457篇
  2014年   554篇
  2013年   586篇
  2012年   544篇
  2011年   619篇
  2010年   574篇
  2009年   805篇
  2008年   579篇
  2007年   653篇
  2006年   627篇
  2005年   641篇
  2004年   575篇
  2003年   567篇
  2002年   447篇
  2001年   421篇
  2000年   394篇
  1999年   333篇
  1998年   338篇
  1997年   318篇
  1996年   334篇
  1995年   284篇
  1994年   271篇
  1993年   210篇
  1992年   169篇
  1991年   95篇
  1990年   67篇
  1989年   50篇
  1988年   42篇
  1987年   16篇
  1986年   14篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1979年   15篇
  1978年   1篇
  1977年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
321.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   
322.
The active convergence between the northwest corner of the Philippine Sea Plate and the southeast margin of the Eurasian Plate has given rise to the Taiwan mountain-building and produced numerous earthquakes. Among the earthquakes, the 1999 Chi-Chi earthquake is the largest one recorded in the century. In this study, we examine the crustal gravitational potential energy (GPE) change in the Taiwan orogen caused by the Chi-Chi earthquake sequence, which was catalogued by the regional broadband seismometer array for a whole year. As a result, we find that the crust was going up and down randomly during the earthquake sequence, but an overall cumulative gain of the crustal GPE, +1.82×1016 J, was rapidly achieved in 1 month after the main shock. The crustal GPE was nearly still afterwards and reached +1.90×1016 J in 1 year. Spatially, although the main surface faulting has occurred in western Taiwan, the crustal GPE gain is mainly distributed in central Taiwan at the area where the existing crustal GPE is high and the existing lithospheric GPE is relatively low. The crustal GPE loss by the Chi-Chi earthquake sequence can also be observed and is generally distributed at both sides of the crustal GPE gain area. The crustal GPE gain mainly found in central Taiwan corroborates that the uplift of the Taiwan orogen is principally taking place in central Taiwan, rather than in the more hazardous western Taiwan.  相似文献   
323.
Shaking during the 1995 Kobe earthquake caused surface material to be more mobile in catchment areas in the Rokko Mountains, Kobe, where there are some active fault lines. As a result, there were many landslides associated with the earthquake. The sedimentation rate in a pond in the mountains increased several fold, then exponentially decreased with seasonality over several years. Six years after the earthquake there were no marked surface movements related to the earthquake, even though the sedimentation rates had increased slightly. A new steady state for the structure of the earthquake‐modi?ed surface had evidently been reached. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
324.
IntroductionUnderstandingthemechanismofcontinentalearthquakesisveryimportantforseismichaz-ardpreventionandearthquakeprediction.Themodernseismotectonictheoryandtheideaofearthquakepredictionaredevelopedmainlyfromthestudiesoninterplateearthquakes,whicharedifficulttoexplainthephenomenaofintraplateearthquakes,suchasthecontinentalearthquakesoccurredinChinesemainland.Whiletheinterplateearthquakesoccurredalongtheplatebounda-ries,theintraplateearthquakesdistributediffuselyintheinterioroftheplates.Thus…  相似文献   
325.
IntroductionItisshowedbyresearchesonearthquakestresstriggeringrecentlythatsmall'static'stresschangesduetopermanentfaultdisplacementcanalterthelikelihoodof,ortrigger,earthquakesonnearbyfaults(Harris,1998).Manystudiesoftriggeringinthenear-field,particularlyofaftershocks,showthesestaticchangesaretriggeringagent(Kilb,etal,2000).ReasenbergandSimpson(1992)studiedthere-sponseofregionalseismicitytothestaticstresschangeproducedbyLomaPrietaearthquake,andtheresultsshowedthataftershockratesincreasedinre…  相似文献   
326.
Introduction Based on the elastic theory of the hard inclusion (Dobrovolskii, 1991), we developed an inclusion theory of rheologic medium, and applied the results of bulk-strain field of a rheologic inclusion model to explain the spatial-temporal evolution process of earthquake precursors (SONG, et al, 2000). In the former paper (SONG, et al, 2003), we derived the viscoelastic displacement field of the rheologic inclusion model on the basis of the analytic expression of displacement field o…  相似文献   
327.
IntroductionWhenpropagatingthroughananisotropicmedium,ashearwavesplitsintotwo(quasi)shearwaveswithdifferentpropagationspeedsandpolarizedorthogonally.Owingtotherecentdevel-opmentofseismicobservationsystem,detectionofshearwavessplittingwithverysmalldelaytimesbetweenfasterandslowershearwavesbecameavailableandprovidedpowerfulapproachfordetectionofcrustalanisotropy.Crampin(1978)emphasizedtheroleofalignedmicrocracksasacauseofcrustalanisotropyandpointedoutthatforverticallyalignedmicrocracksthedirecti…  相似文献   
328.
Introduction Sichuan-Yunnan region is a major area with frequent strong earthquakes in Chinese mainland, especially the middle-southern segment of South-North Seismic Zone, where many strong earth-quakes occurred in history. In the past 30 years, Sichuan-Yunnan region has two seismically active periods: one is from Tonghai earthquake in 1970 to Longling-Songpan earthquake in 1976, the other is from Lancang earthquake in 1988 to now. During this two periods, the M=7.7 Tonghai, M=7.1 Dagua…  相似文献   
329.
Large magnitude earthquakes generated at source–site distances exceeding 100km are typified by low‐frequency (long‐period) seismic waves. Such induced ground shaking can be disproportionately destructive due to its high displacement, and possibly high velocity, shaking characteristics. Distant earthquakes represent a potentially significant safety hazard in certain low and moderate seismic regions where seismic activity is governed by major distant sources as opposed to nearby (regional) background sources. Examples are parts of the Indian sub‐continent, Eastern China and Indo‐China. The majority of ground motion attenuation relationships currently available for applications in active seismic regions may not be suitable for handling long‐distance attenuation, since the significance of distant earthquakes is mainly confined to certain low to moderate seismicity regions. Thus, the effects of distant earthquakes are often not accurately represented by conventional empirical models which were typically developed from curve‐fitting earthquake strong‐motion data from active seismic regions. Numerous well‐known existing attenuation relationships are evaluated in this paper, to highlight their limitations in long‐distance applications. In contrast, basic seismological parameters such as the Quality factor (Q‐factor) could provide a far more accurate representation for the distant attenuation behaviour of a region, but such information is seldom used by engineers in any direct manner. The aim of this paper is to develop a set of relationships that provide a convenient link between the seismological Q‐factor (amongst other factors) and response spectrum attenuation. The use of Q as an input parameter to the proposed model enables valuable local seismological information to be incorporated directly into response spectrum predictions. The application of this new modelling approach is demonstrated by examples based on the Chi‐Chi earthquake (Taiwan and South China), Gujarat earthquake (Northwest India), Nisqually earthquake (region surrounding Seattle) and Sumatran‐fault earthquake (recorded in Singapore). Field recordings have been obtained from these events for comparison with the proposed model. The accuracy of the stochastic simulations and the regression analysis have been confirmed by comparisons between the model calculations and the actual field observations. It is emphasized that obtaining representative estimates for Q for input into the model is equally important.Thus, this paper forms part of the long‐term objective of the authors to develop more effective communications across the engineering and seismological disciplines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
330.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号