首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   23篇
  国内免费   175篇
测绘学   63篇
大气科学   140篇
地球物理   440篇
地质学   1144篇
海洋学   143篇
天文学   39篇
综合类   2篇
自然地理   124篇
  2024年   21篇
  2023年   70篇
  2022年   51篇
  2021年   74篇
  2020年   165篇
  2019年   93篇
  2018年   123篇
  2017年   186篇
  2016年   113篇
  2015年   139篇
  2014年   241篇
  2013年   365篇
  2012年   227篇
  2011年   2篇
  2010年   9篇
  2009年   12篇
  2008年   14篇
  2007年   14篇
  2006年   10篇
  2005年   22篇
  2004年   20篇
  2003年   19篇
  2002年   27篇
  2001年   12篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1978年   1篇
排序方式: 共有2095条查询结果,搜索用时 15 毫秒
91.
Time-Frequency Peak Filtering (TFPF) is an effective method to eliminate pervasive random noise when seismic signals are analyzed. In conventional TFPF, the pseudo Wigner–Ville distribution (PWVD) is used for estimating instantaneous frequency (IF), but is sensitive to noise interferences that mask the borderline between signal and noise and detract the energy concentration on the IF curve. This leads to the deviation of the peaks of the pseudo Wigner–Ville distribution from the instantaneous frequency, which is the cause of undesirable lateral oscillations as well as of amplitude attenuation of the highly varying seismic signal, and ultimately of the biased seismic signal. With the purpose to overcome greatly these drawbacks and increase the signal-to-noise ratio, we propose in this paper a TFPF refinement that is based upon the joint time-frequency distribution (JTFD). The joint time-frequency distribution is obtained by the combination of the PWVD and smooth PWVD (SPWVD). First we use SPWVD to generate a broad time-frequency area of the signal. Then this area is filtered with a step function to remove some divergent time-frequency points. Finally, the joint time-frequency distribution JTFD is obtained from PWVD weighted by this filtered distribution. The objective pursued with all these operations is to reduce the effects of the interferences and enhance the energy concentration around the IF of the signal in the time-frequency domain. Experiments with synthetic and real seismic data demonstrate that TFPF based on the joint time-frequency distribution can effectively suppress strong random noise and preserve events of interest.  相似文献   
92.
The spatial and temporal distribution of near-shore fresh submarine groundwater discharge (SGD) was characterised from the coastal aquifers of the Willunga Basin, South Australia, an extensive aquifer system that supports an important viticultural region. Measurements of electrical conductivity (EC) and 222Rn (radon) activity were collected at 19 sites along the coastline during the Southern Hemisphere spring (2011) and summer (2013). At each site, samples were collected from the surf zone as well asporewater from beach sediment in the intertidal zone. Surf-zone radon activity ranged from <5 to 70mBq L–1, and intertidal porewater radon ranged over two orders of magnitude (220–36 940 mBq L–1) along the Willunga Basin coastline during both surveys. Overall, surf-zone and porewater EC was lower in the spring 2011 survey than in the summer 2013 survey. Porewater EC was similar to that of coastal water at most sites along the coastline, except at three sites where porewater EC was found to be lower than coastal water during both surveys, and three sites where evaporated seawater was observed in the summer survey. Based on the patterns in radon and EC along the coastline, two sites of localised fresh SGD were identified, in addition to a groundwater spring that is known to discharge to the coast. The results indicate that near-shore fresh SGD occurs as localised seeps rather than diffuse seepage along the entire coastline. The apparent absence of groundwater discharge at most locations is also consistent with current evidence suggesting that extensive groundwater pumping within the basin has resulted in seawater intrusion across much of the coastline. These observations also suggest that previous studies are likely to have over-estimated SGD rates from the Willunga Basin because they assumed that SGD occurred along the entire coastline.  相似文献   
93.
《地学前缘(英文版)》2020,11(3):807-820
The fungus Ophiocordyceps sinensis is endemic to the vast region of the Qinghai-Tibetan plateau(QTP).The unique and complex geographical environmental conditions have led to the "sky island" distribution structure of O.sinensis.Due to limited and unbalanced sample collections,the previous data on O.sinensis regarding its genetic diversity and spatial structure have been deemed insufficient.In this study,we analyzed the diversity and phylogeographic structures of O.sinensis using internally transcribed spacer region(ITS) and 5-locus datasets by a large-scale sampling.A total of 111 haplotypes of ITS sequences were identified from 948 samples data of the fungus O.sinensis,with representing high genetic diversity,and 8 phylogenetic clades were recognized in O.sinensis.Both the southeastern Tibet and the northwestern Yunnan were the centers of genetic diversity and genetic differentiation of the fungus,and they were inferred as the glacial refugia in the Quaternary.Three distribution patterns were identified to correspond to the 8 clades,including but not limited to the coexistence of widely and specific local distributive structures.It also revealed that the differentiation pattern of O.sinensis did not fit for the isolation-by-distance model.The differentiation into the 8 clades occurred between 1.56 Myr and6.62 Myr.The ancestor of O.sinensis most likely originated in the late Miocene(6.62 Myr) in the northwestern Yunnan,and the Scene A-C of the Qinghai-Tibetan movements may have played an important role in the differentiation of O.sinensis during the late Miocene-Pliocene periods.Our current results provide a much clearer and detailed understanding of the genetic diversity and geographical spatial distribution of the endemic alpine fungus O.sinensis.It also revealed that the geochronology resulting from paleogeology could be cross-examined with biomolecular clock at a finer scale.  相似文献   
94.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
95.
ABSTRACT

A rainfall–streamflow model is proposed, in which a downscaled rainfall series and its wavelet-based decomposed sub-series at optimum lags were used as covariates in GAMLSS (Generalized Additive Model in Location, Scale and Shape). GAMLSS is applied in climate change impact assessment using CMIP5 general climate model to simulate daily streamflow in three sub-catchments of the Onkaparinga catchment, South Australia. The Spearman correlation and Nash-Sutcliffe efficiency between the observed and median simulated streamflow values were high and comparable for both the calibration and validation periods for each sub-catchment. We show that the GAMLSS has the capability to capture non-stationarity in the rainfall–streamflow process. It was also observed that the use of wavelet-based decomposed rainfall sub-series with optimum lags as covariates in the GAMLSS model captures the underlying physics of the rainfall–streamflow process. The development and application of an empirical rainfall–streamflow model that can be used to assess the impact of catchment-scale climate change on streamflow is demonstrated.  相似文献   
96.
The retreat of the Tethys Sea and the uplift of the Tibetan Plateau play the critical roles in driving Asian climatic changes during the Cenozoic. In the Pamir–Tien Shan convergence zone, over 3000 m of Cenozoic successions, consisting of marine deposits in the lower, continental clay and fine sand in the middle, and molasse in the upper part, record the evolution of the Tethys Sea, the Asian aridification, and the deformation of the Pamir. In this work, the existing biostratigraphic subdivisions and new electronic spinning resonance dating results were used to assign ages to formations within the Ulugqat section. Sedimentary facies analysis and multi-proxy indices were used to reconstruct the paleo-environmental evolution. The results show: (1) the Pamir–Tien Shan convergence zone has undergone progressive environmental changes from shallow marine before ∼34 Ma to arid land at ∼23 Ma and finally to inter-mountain basin by ∼5.3 Ma; (2) the overall increase in mean size of grains, decrease in redness, in magnetic susceptibility, and in proportion of the ultrafine component of the sediments studied revealed a long-term strengthening in potential energy to transporting medium, cooling, and enhanced continental aridity, respectively; (3) the easternmost edge of the Tethys Sea prevailed in the western Tarim Basin from late Cretaceous to early Cenozoic, and finally retreated from this region around the Eocene–Oligocene transition, which in turn strengthened the Asian aridification; (4) accumulation of molasse with an upper age of ∼1 Ma suggests that the deformation front of the Pamir migrated to this area at or before that time.  相似文献   
97.
This paper interprets differences in flood hazard projections over Europe and identifies likely sources of discrepancy. Further, it discusses potential implications of these differences for flood risk reduction and adaptation to climate change. The discrepancy in flood hazard projections raises caution, especially among decision makers in charge of water resources management, flood risk reduction, and climate change adaptation at regional to local scales. Because it is naïve to expect availability of trustworthy quantitative projections of future flood hazard, in order to reduce flood risk one should focus attention on mapping of current and future risks and vulnerability hotspots and improve the situation there. Although an intercomparison of flood hazard projections is done in this paper and differences are identified and interpreted, it does not seems possible to recommend which large-scale studies may be considered most credible in particular areas of Europe.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   
98.
The mid-Carboniferous Pelhřimov core complex, Bohemian Massif, is a crustal-scale elongated granite–migmatite dome interpreted to have formed by gravity-driven diapiric upwelling of the metapelitic middle crust. The vertical diapiric flow is evidenced by outward-dipping foliation and lineation patterns, deformation coeval with the widespread presence of melt, rapid exhumation of the dome center from depths corresponding to pressure of about 0.6 GPa to shallow levels (pressure less than 0.2 GPa) within 2 M.y., and kinematic indicators of downward return flow of the mantling rocks. As compared to common diapirs, however, the Pelhřimov complex exhibits a more complicated inferred strain pattern with two perpendicular, irregularly alternating directions of horizontal extension in what is interpreted as the diapir head. Comparison of structural data from migmatites with anisotropy of magnetic susceptibility (AMS) data in granites also reveals that only final increments of strain are recorded in the granites. The map dimensions and gravity image of the complex suggest that the diapiric upwelling affected a large portion of the orogen's interior between two microplates brought together during continental collision. The northwesterly microplate (the upper-crustal Teplá–Barrandian unit) collapsed vertically as an ‘elevator’ at around 346–337 Ma whereas the easterly microplate (Brunia) was underthrust beneath the Moldanubian rocks during ∼346–330 Ma (the indentor). It is suggested that these microplates then acted as cold and rigid margins localizing mid-crustal diapirism and associated voluminous S-type granite plutons inbetween, parallel to the edge of the Brunia indentor.We conclude that bringing together soft metapelitic middle crust with two rigid lithospheric blocks during collision resulted in significant lateral temperature and strength variations across the orogen's interior. A general conclusion from these inferences is that granite–migmatite domes delineating margins of collided microplates may form as crustal-scale structures accommodating late-orogenic isostatic reequilibration.  相似文献   
99.
ABSTRACT

The Early Cretaceous was an important epoch in the evolution of the Earth system in which major tectonic episodes occurred, especially along the Alpine–Himalayan belt. The paucity of reliable palaeogeographic data from the central segment of this geological puzzle, however, hampers the reconstruction of a panoramic view of its Early Cretaceous palaeogeography and geodynamic setting. Here we present multidisciplinary provenance data from Lower Cretaceous strata of the overriding plate of the Neo-Tethyan subduction zone (the Sanandaj–Sirjan Zone; SSZ, of central Iran), including structural, basin-fill evolution, petrographic and geochemical analyses. Sandstone provenance analysis of Lower Cretaceous red beds suggests the occurrence of sub-mature litho-quartzose sandstones attributed to an active continental arc margin in convergent setting predominantly derived from plutonic, quartzose sedimentary and metamorphic rocks exposed in the central SSZ. Weathering indices indicate moderate chemical weathering in the source area which may be related to close source-to-sink relationships or arid climate. Our palaeogeographic reconstructions and original geological mapping indicate that the erosion of uplifted basement rocks exposed in horst blocks provided the sediment sources for the syn-extensional deposition of uppermost Jurassic–lowermost Cretaceous conglomerates and Lower Cretaceous siliciclastic red beds within a continental retro-arc basin during initiation of the ‘Neo-Tethys 2?. The polyphase tectonic reactivation along the principal fault of the study area controlled the syn- and post-extensional tectonostratigraphic evolution that reflect the corresponding mechanical decoupling/coupling along the northern Neo-Tethyan plate margin.  相似文献   
100.
Image classification using multispectral sensors has shown good performance in detecting macrophytes at the species level. However, species level classification often does not utilize the texture information provided by high resolution images. This study investigated whether image texture provides useful vector(s) for the discrimination of monospecific stands of three floating macrophyte species in Quickbird imagery of the South Nation River. Semivariograms indicated that window sizes of 5 × 5 and 13 × 13 pixels were the most appropriate spatial scales for calculation of the grey level co-occurrence matrix and subsequent texture attributes from the multispectral and panchromatic bands. Of the 214 investigated vectors (13 Haralick texture attributes * 15 bands + 9 spectral bands + 10 transformations/indices), feature selection determined which combination of spectral and textural vectors had the greatest class separability based on the Mann–Whitney U-test and Jefferies–Matusita distance. While multispectral red and near infrared (NIR) performed satisfactorily, the addition of panchromatic-dissimilarity slightly improved class separability and the accuracy of a decision tree classifier (Kappa: red/NIR/panchromatic-dissimilarity – 93.2% versus red/NIR – 90.4%). Class separability improved by incorporating a second texture attribute, but resulted in a decrease in classification accuracy. The results suggest that incorporating image texture may be beneficial for separating stands with high spatial heterogeneity. However, the benefits may be limited and must be weighed against the increased complexity of the classifier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号