The geology and mineralogy of host metamorphic rocks, the mineralogy of sulfide ores, and the distribution of PGE mineralization were studied in detail for the Kvinum-1 and Kvinum-2 copper-nickel occurrences of the Kvinum ore field, which are the most promising targets for the copper-nickel-PGE mineralization of the Sredinny Range of Kamchatka. It was established that stringer-disseminated and massive copper-nickel ores are localized in amphibole peridotites, cortlandites, and form ore bodies varying from tens of centimeters to 5–20 m thick among the layered cortlandite-gabbroid massifs. The massive sulfide ores were found only at the bottom of cortlandite bodies and upsection grade into stringer-disseminated and disseminated ores. Pyrrhotite, chalcopyrite, and pentlandite are the major ore minerals with a sharply subordinate amount of pyrite, sphalerite, galena, arsenopyrite, and löllingite. Besides pentlandite, the Ni-bearing minerals include sulforasenides (gersdorffite), arsenides (nickeline), and tellurides (melonite) of nickel. It was found that PGE mineralization represented by antimonides (sudburyite) and tellurobismuthides (michenerite) of Pd with sharply subordinate platinum arsenide (sperrylite) is confined to the apical parts of massive sulfide zones and the transition zone to the stringer-disseminated ores. Ore intervals enriched in arsenides and tellurides of Ni, Pd, and Bi contain high-purity gold. In the central parts of the orebodies, the contents of PGE and native gold are insignificant. It is suggested that the contents of major sulfide minerals and the productivity of PGE mineralization in the cortlandites are defined by combined differentiation and sulfurization of ultramafic derivatives under the effect of fluids, which are accumulated at the crystallization front and cause layering of parental magmas with different sulfur contents. The fluid-assisted layering of mafic-ultramafic massifs resulted in the contrasting distribution of PGM in response to uneven distribution of sulfur (as well as As, Te, and Bi) during liquid immiscibility. The productivity of PGE mineralization significantly increases with increasing contents of S, As, Te, and Bi (elements to which Pt and, especially, Pd have high affinity) in fluids. 相似文献
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the 相似文献
Generally, P–T pseudosections for reduced compositional systems, such as K2O–FeO–MgO–Al2O3–SiO2–H2O, Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O and MnO–K2O–FeO–MgO–Al2O3–SiO2–H2O, are well suited for inferring detailed P–T paths, comparing mineral assemblages observed in natural rocks with those calculated. Examples are provided by P–T paths inferred for four metapelitic samples from a 1 m2 wide outcrop of the Herbert Mountains in the Shackleton Range, Antarctica. The method works well if the bulk composition used is reconstituted from average mineral modes and mineral compositions (AMC) or when X‐ray fluorescence (XRF) data are corrected for Al2O3 and FeO. A plagioclase correction is suitable for Al2O3. Correction for FeO is dependent on additional microscopic observations, e.g. the kind and amount of opaque minerals. In some cases, all iron can be treated as FeOtot, whereas in others a magnetite or hematite correction yields much better results. Comparison between calculated and observed mineral modes and mineral compositions shows that the AMC bulk composition is best suited to the interpretation of rock textures using P–T pseudosections, whereas corrected XRF data yield good results only when the investigated sample has few opaque minerals. The results indicate that metapelitic rocks from the Herbert Mountains of the Northern Shackleton Range underwent a prograde P–T evolution from about 600 °C/5.5 kbar to 660 °C/7 kbar, followed by nearly adiabatic cooling to about 600 °C at 4.5 kbar. 相似文献