首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   6篇
  国内免费   3篇
测绘学   2篇
大气科学   2篇
地球物理   56篇
地质学   26篇
海洋学   2篇
综合类   2篇
自然地理   31篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2017年   10篇
  2016年   7篇
  2015年   3篇
  2014年   8篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有121条查询结果,搜索用时 343 毫秒
31.
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.  相似文献   
32.
M. Nouh 《水文研究》1990,4(2):103-120
Data on performance of a geomorphologic rainfall-runoff model in simulating observed flash flood hydrographs in 32 arid catchments have been analysed. The catchments, which are located in the southwest region of Saudi Arabia, vary in their size, slope of land, and characteristics of soils, and are in zones of different rainstorm characteristics. The sensitivity of the model accuracy with various catchment and rainfall characteristics has been investigated. Size, followed by rate of infiltration and slope of land, are the most effective catchment characteristics affecting the accuracy. In addition, the accuracy varies with spatial and temporal rainfall variation, total rainfall depth, and length of the dry period between two successive rainstorms over catchment. It is sensitive to temporal rainfall variation more than spatial rainfall variation, and to the dry period more than total rainfall depth. Generally, the model did not display an accuracy approaching that of the observations, especially in simulating peak flowrates in large size infiltrating catchments having high temporal rainstorm variation. Guidelines on the best use of the model in arid catchments were proposed.  相似文献   
33.
Meteosat data for 1986 to 1988 have been used to estimate the daily rainfall over catchments of tributaries of the river Senegal in Mail and Guinea. The technique uses the methodology of the TAMSAT group of the University of Reading, which involves the selection of an appropriate cloud top temperature threshold to determine whether the cloud is producing rain and the rainfall is estimated from the period during which storm clouds remain over a site. After calibration against all available raingauges in the catchments, the daily rainfall estimates derived by this technique were used as inputs to rainfall-runoff models. The results indicate that the streamflow models, which had themselves been calibrated using raingauge data, performed as well or better when the satellite derived estimates were used as inputs than when gauge data were used. An economical, automated operational system is described.  相似文献   
34.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   
35.
Improving our ability to detect changes in terrestrial and aquatic systems is a grand challenge in the environmental sciences. In a world experiencing increasingly rapid rates of climate change and ecosystem transformation, our ability to understand and predict how, when, where, and why changes occur is essential for adapting and mitigating human behaviours. In this context, long-term field research infrastructures have a fundamentally important role to play. For northern boreal landscapes, the Krycklan Catchment Study (KCS) has supported monitoring and research aimed at revealing these changes since it was initiated in 1980. Early studies focused on forest regeneration and microclimatic conditions, nutrient balances and forest hydrology, which included monitoring climate variables, water balance components, and stream water chemistry. The research infrastructure has expanded over the years to encompass a 6790 ha catchment, which currently includes 11 gauged streams, ca. 1000 soil lysimeters, 150 groundwater wells, >500 permanent forest inventory plots, and a 150 m tall tower (a combined ecosystem-atmosphere station of the ICOS, Integrated Carbon Observation System) for measurements of atmospheric gas concentrations and biosphere-atmosphere exchanges of carbon, water, and energy. In addition, the KCS has also been the focus of numerous high resolution multi-spectral LiDAR measurements and large scale experiments. This large collection of equipment and data generation supports a range of disciplinary studies, but more importantly fosters multi-, trans-, and interdisciplinary research opportunities. The KCS attracts a broad collection of scientists, including biogeochemists, ecologists, foresters, geologists, hydrologists, limnologists, soil scientists, and social scientists, all of whom bring their knowledge and experience to the site. The combination of long-term monitoring, shorter-term research projects, and large-scale experiments, including manipulations of climate and various forest management practices, has contributed much to our understanding of boreal landscape functioning, while also supporting the development of models and guidelines for research, policy, and management.  相似文献   
36.
We demonstrate the need for better representations of aquifer architecture to understand hydraulic connectivity and manage groundwater allocations for the ~140 m-thick alluvial sequences in the Lower Namoi Catchment, Australia. In the 1980s, an analysis of palynological and groundwater hydrograph data resulted in a simple three-layer stratigraphic/hydrostratigraphic representation for the aquifer system, consisting of an unconfined aquifer overlying two semi-confined aquifers. We present an analysis of 278 borehole lithological logs within the catchment and show that the stratigraphy is far more complex. The architectural features and the net-to-gross line-plot of the valley-filling sequence are best represented by a distributive fluvial system, where the avulsion frequency increases at a slower rate than the aggradation rate.

We also show that an improved understanding of past climates contextualises the architectural features observable in the valley-filling sequence, and that the lithofacies distribution captures information about the impact of climate change during the Neogene and Quaternary. We demonstrate the correlation between climate and the vertical lithological succession by correlating the sediment net-to-gross ratio line-plot with the marine benthic oxygen isotope line-plot – a climate change proxy. Pollens indicate that there was a transition from a relatively wet climate in the mid–late Miocene to a drier climate in the Pleistocene, with a continuing drying trend until present. Groundwater is currently extracted from the sand and gravel belts associated with the high-energy wetter climate. However, some of these channel belts are disconnected from the modern river and flood zone. We show that the cutoff between the hydraulically well- and poorly connected portions of the valley-filling sequence matches the connectivity threshold expected from a fluvial system.  相似文献   
37.
针对县域医疗卫生服务设施的空间布局问题,应用改进两步移动搜索法对德清县医疗卫生服务的空间可达性进行评价。具体改进包括:引入核密度型距离衰减函数对两步移动搜索法进行扩展、考虑医疗设施资源的未充分利用、对不同规模等级医疗机构设置不同服务阈值。计算结果表明:浙江省德清县域医疗卫生服务空间可达性呈圈层式空间分布特征,高可达性区域主要集中于县城及邻接区域,边缘地区缺医明显;基于改进两步移动搜索法和传统两步移动搜索法的可达性计算结果具有不同的整体特征,但前者可达性计算结果及空间分布更符合实际。  相似文献   
38.
Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the drought signal in both time and space. Analysis is conducted using monthly time series covering the period 1961–1997 for the Pang catchment, UK. The time series include observed rainfall and groundwater recharge, head and discharge simulated by physically-based soil water and groundwater models. Drought events derived separately for each unit area and variable are combined to yield catchment scale drought characteristics. The study reveals relatively large differences in the spatial and temporal characteristics of drought for the different variables. Meteorological droughts cover frequently the whole catchment; and they are more numerous and last for a short time (1–2 months). In comparison, droughts in recharge and hydraulic head cover typically a smaller area and last longer (4–5 months). Hydraulic head and groundwater discharge exhibit similar drought characteristics, which can be expected in a groundwater fed catchment. Deficit volume is considered a robust measure of the severity of a drought event over the catchment area for all variables; whereas, duration is less sensitive, particular for rainfall. Spatial variability in drought characteristics for groundwater recharge, head and discharge are primarily controlled by catchment properties. It is recommended not to use drought area separately as a measure of drought severity at the catchment scale, rather it should be used in combination with other drought characteristics like duration and deficit volume.  相似文献   
39.
The Sample Catchment Basin Approach (SCBA) is one of the techniques widely employed in the analysis of stream sediment geochemical data and delineation of anomalous catchments. However, this method fails to take into account the real catchment basin boundaries of each sample by incorporating only the incremental area between two adjacent samples. In other words, the SCBA incorrectly assumes that the geochemistry of every sample catchment within a drainage is independent from upstream sample catchment(s) feeding into this drainage. The chemical composition of sediment at the basin outlet originates from the whole basin upstream and not the incremental area as postulated in the SCBA. Consequently, the calculated background values for various lithologies and the background value for the element of interest at the basin outlet might be far from reality.This study used a True Sample Catchment Basin Approach (TSCBA), that reflects the true catchment boundary of every stream sediment sample, and in which all calculations are carried out on the premise that this boundary and the true area affect the composition of each sample. The results obtained from the application of both the SCBA and TSCBA to a gold endowed study area in western Iran clearly illustrated the superiority of the TSCBA over the SCBA. In addition, this study demonstrated the advantage of using the modified dilution correction equation of Mokhtari and Garousi Nezhad (2015), as compared to the existing Hawkes’s equation commonly used for dilution correction of residual values.  相似文献   
40.
格尔木河流域近60 a降水、蒸发及温度变化特征分析   总被引:1,自引:1,他引:0  
以西部内陆柴达木盆地格尔木河流域近60 a气候变化特征为主题,以流域水循环理论为指导,应用趋势分析、Morlet小波函数等技术手段,采用定性判断和定量分析相结合方法,首先,对研究区大气降水、气温、蒸发多年监测资料进行系统分析,包括深入了解研究区水文、水资源开发利用状况,分析其年际、年内变化规律。结果表明:(1)近60 a研究区气候由冷干向暖湿转变,研究区气温呈波动上升趋势。自1955年至今气温累积上升0.37℃,1967年之后区域气温升高速率明显增加。自1968年开始降雨量显著增加,多年平均降雨量为38.27 mm·a-1,其中7、8月份降水量增加对全年降水量增加的贡献率最大。自1956年开始蒸发量显著下降,由1956年的3 278.2 mm·a-1下降至2014年的2 211.57 mm·a-1,平均减速为18.08 mm·a-1。(2)利用Morlet小波变换对气候变化特征进行了动态周期分析,分析得出研究区内降水、蒸发和温度都存在多时间尺度特征。其中降水存在14~16 a和32~36 a左右周期,蒸发量存在9~12 a和24~27 a时间尺度的周期,而温度存在7~8 a尺度和25~27 a两个时间尺度的周期特征。根据降水周期特征,可以推测出2016-2030年左右年降水量将经历几年降水偏多期,然后呈减少趋势,温度在未来几年内呈增多趋势,而蒸发则呈减少趋势。研究成果为该区水资源合理开发利用提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号