首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   47篇
  国内免费   149篇
测绘学   2篇
大气科学   6篇
地球物理   30篇
地质学   366篇
海洋学   10篇
综合类   6篇
自然地理   27篇
  2023年   2篇
  2022年   10篇
  2021年   11篇
  2020年   12篇
  2019年   12篇
  2018年   8篇
  2017年   14篇
  2016年   13篇
  2015年   9篇
  2014年   16篇
  2013年   27篇
  2012年   15篇
  2011年   16篇
  2010年   18篇
  2009年   14篇
  2008年   29篇
  2007年   23篇
  2006年   21篇
  2005年   14篇
  2004年   23篇
  2003年   14篇
  2002年   9篇
  2001年   11篇
  2000年   16篇
  1999年   8篇
  1998年   7篇
  1997年   19篇
  1996年   12篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
51.
 40Ar/39Ar同位素年龄测定,获得南天山蛇绿混杂岩基质黑云母石英片岩单矿物黑云母的两个坪年龄分别为(370.0±4.8)Ma和(259.0±3.3)Ma;中天山南缘长英质糜棱岩单矿物黑云母的坪年龄为(250.5±7.9)Ma,二云母花岗岩单矿物白云母的坪年龄为(348.9±0.3)Ma。结合南天山古生代沉积特征和塔里木及伊犁-哈萨克斯坦板块古地磁数据的综合分析,提出南天山晚泥盆世至石炭纪早期完成向伊犁-哈萨克斯坦板块的B型俯冲,中-晚二叠世进行陆内A型俯冲造山的板块碰撞演化模式。  相似文献   
52.
新疆蛇绿岩就位机制   总被引:4,自引:0,他引:4  
蛇绿岩是古代大洋岩石圈的残片 ,但它并不代表正常的洋壳 ,也不能无条件的与现代大洋进行对比。因为蛇绿岩形成环境具有多样性 ,既可以形成于大洋 ,也可以形成于洋中脊、弧后盆地、弧前盆地、岛弧、被动大陆边缘或小洋盆等。蛇绿岩可以形成于多种构造环境 ,在就位机制上也应存在多样化 ,依据新疆实际 ,将蛇绿岩分为 5种就位机制即 :克拉麦里型 (特提斯型 )、特克斯型 (环太平洋型 )、阔克萨勒型 (底辟型 )、唐巴勒型 (过渡型 )、西昆仑仰冲型 (特罗多斯型 )等  相似文献   
53.
北祁连蛇绿岩的特征、形成环境及其构造意义   总被引:58,自引:1,他引:58  
文中总结了北祁连蛇绿岩的特征,指出北祁连蛇绿岩大多具有MORB的性质,有玻安岩产出,形成在弧后和岛弧环境。北祁连蛇绿岩大多侵位在岛弧增生楔或活动陆缘地体之上,蛇绿岩属于科迪勒拉型,早古生代的北祁连造山带属于科迪勒拉型造山带。部分蛇绿岩之上整合产出一套沉积-火山岩系,称为蛇绿岩的上覆岩系。指出蛇绿岩及其上覆岩系的枕状熔岩分别来自不同的源区,具有不同的构造意义。还讨论了北祁连早古生代板块构造格局,认为北祁连洋盆属于古亚洲洋的一部分,可能曾经是一个较大规模的洋盆。献中通常把它当成增生或俯冲杂岩带的一部分来看待〔13,16-17〕;大岔大坂蛇绿岩带,其向两侧的延伸情况不清楚;九个泉(或塔墩沟)蛇绿岩带,向东可连到景泰县老虎山蛇绿岩,有人认为,向西可与榆树沟蛇绿岩相连〔20〕。早先认为,北祁连存在新元古代、中寒武和早-中奥陶世三个时代的蛇绿岩〔2,11〕,经过多年研究,目前大多数同意蛇绿岩主要是晚寒武-奥陶纪的〔13,16〕。图1北祁连早古生代蛇绿岩分布图1.前寒武纪基底;2.俯冲杂岩带;3.蛇绿岩。图中数字:1.九个泉;2.大岔大坂;3.边马沟;4.玉石沟;5.小八宝;6.百经寺;7.老虎山;8.榆树沟山2北祁连几  相似文献   
54.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   
55.
We present 24 40Ar/39Ar ages for the youngest volcanic products from the Alban Hills volcanic district (Rome). Combined with petrological data on these products, we have attempted to define the chronology of the most recent phase of activity and to investigate the magma evolution of this volcanic district. The early, mainly explosive activity of the Alban Hills spanned the interval from 561±1 to 351±3 ka. After approximately 50-kyr of dormancy, a mainly effusive phase of activity took place, accompanied by the strombolian activity of a small central edifice (Monte delle Faete). This second phase of activity spanned the interval 308±2 to 250±1 ka. After another dormancy period of approximately 50-kyr, a new, hydromagmatic phase of activity started at 200 ka at several centers located to the southwest of the Monte delle Faete edifice. After an initial recurrence period of approximately 50-kyr, which also characterized this new phase of activity, the longest dormancy period (approximately 80-kyr) in the history of the volcanic district preceded the start of the activity of the Albano and Giuturna centers at 70±1 ka. Results of our study suggest a quasi-continuous magmatic activity feeding hydromagmatic centers with a new acme of volcanism since around 70 ka. Based on data presented in this paper, we argue that the Alban Hills should not be considered an extinct volcanic district and a detailed re-assessment of the volcanic hazard for the area of Rome is in order. Published online: 4 April 2003 Editorial responsibility: J. Donnelly-Nolan  相似文献   
56.
Subduction-zone peridotites and their records of crust-mantle interaction   总被引:1,自引:0,他引:1  
Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth's layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.  相似文献   
57.
We propose a new runoff model including an outflow process that was applied to two adjacent basins (CL, TL) located in Lambir Hills National Park in north‐central Sarawak, Malaysia. Rainfall, runoff, topography, and soil layer thickness were observed. About 19% of annual runoff was observed in the CL basin (21.97 ha), whereas about 46% was observed in the TL basin (23.25 ha). It was inferred that the CL basin has an outflow because of low base flow, small runoff peak, and excessive water loss. By incorporating the outflow process into the HYdrological CYcle MODEL, good agreement between the data generated by the model and that observed was shown, with the exception of the data from the rainless period. Then, the fitting parameters for each basin were exchanged, except for the outflow parameter, and the characteristics of each basin were compared by calculating virtual runoff. As a result, the low base flow of the CL basin was estimated by the movement of the rainwater that escaped from the basin as deep percolation or lateral flow (11% of rainfall). The potential of the CL basin for mitigating flood and drought appeared to be higher than that of the TL basin. This is consistent with the topographic characteristics of the CL basin, which has a gentler slope than the TL basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
58.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   
59.
Non-uniform ground motions are generated based on a single record available at a site and seismic wave scattering analysis. The Chino Hills 2008 earthquake records at the Pacoima Dam site are used to indicate the accuracy of the method. Dynamic analysis of the Pacoima dam-reservoir-foundation under uniform and non-uniform ground motions is carried out using the EACD-3D2008 software, and the results are compared to recorded responses at different locations on the dam. There is good agreement between computed and recorded displacements of the dam for non-uniform excitation. For uniform excitation, the displacements are underestimated in comparison with those obtained from recorded excitation. Significant intensification of stresses, especially near the foundation, and different patterns of stress distribution are observed for non-uniform excitation in comparison with uniform excitation. For uniform excitation maximum stresses occur in the crown cantilever near the crest, but for non-uniform excitation the maximum stresses occur along the sides and near the foundation.  相似文献   
60.
A comprehensive volcanological study of the Albano multiple maar (Alban Hills, Italy) using (i) 40Ar/39Ar geochronology of the most complete stratigraphic section and other proximal and distal outcrops and (ii) petrographic observations, phase analyses of major and trace elements, and Sr and O isotopic analyses of the pyroclastic deposits shows that volcanic activity at Albano was strongly discontinuous, with a first eruptive cycle at 69±1 ka producing at least two eruptions, and a second cycle with two peaks at 39±1 and 36±1 ka producing at least four eruptions. Contrary to previous studies, we did not find evidence of magmatic or hydromagmatic eruptions younger than 36±1 ka. The activity of Albano was fed by a new batch of primary magma compositionally different from that of the older activity of the Alban Hills; moreover, the REE and 87Sr/86Sr data indicate that the Albano magma originated from an enriched metasomatized mantle. According to the modeled liquid line of descent, this magma differentiated under the influence of magma/limestone wall rock interaction. Our detailed eruptive and petrologic reconstruction of the Albano Maar evolution substantiates the dormant state of the Alban Hills Volcanic District. Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan An erratum to this article can be found at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号