首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   25篇
  国内免费   34篇
测绘学   2篇
大气科学   15篇
地球物理   37篇
地质学   177篇
海洋学   61篇
天文学   3篇
综合类   4篇
自然地理   13篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   9篇
  2017年   7篇
  2016年   8篇
  2015年   7篇
  2014年   23篇
  2013年   13篇
  2012年   16篇
  2011年   18篇
  2010年   12篇
  2009年   20篇
  2008年   15篇
  2007年   13篇
  2006年   11篇
  2005年   16篇
  2004年   10篇
  2003年   13篇
  2002年   5篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
排序方式: 共有312条查询结果,搜索用时 42 毫秒
91.
High-pressure granulite facies rocks of the Bacariza Formation (Cabo Ortegal, NW Spain) were syn-metamorphically deformed at the contacts with the bounding units (peridotite and eclogite massifs). This enabled the formation of meter-thick, spectacular shear zones with reworked and transposed foliations and lineations. The texturally stable mineral assemblage of the new fabrics records an intense, ductile deformation of the mineral aggregate at temperatures of 700–800 °C associated with amalgamation of eclogite, high-pressure granulitic rocks and ultramafic sheets in deep portions of a subduction channel. The lattice preferred orientation of the main constituent minerals (garnet, augite, amphibole, plagioclase, quartz and biotite) discloses the active deformation mechanisms at the scale of the mineral grains and the relationships with the deformation at larger scales. Overprinting relationships of the metamorphic assemblages demonstrates that partitioning and deformation localization occurred at different scales under similar high-grade conditions. Complete macroscopic transposition in the shear zones was complementary to meso and microscopic partitioning of deformation intensity and mechanisms between different lithological layers and mineral species.  相似文献   
92.
93.
In three field campaigns between the years 2000 and 2004 geophysical measurements were conducted in the Ejina Basin, NW China. Research work in the year 2004, which is described in this paper, was concentrated on the Gurinai Structure (101°25′E, 41°N) situated in the southeastern part of the Ejina Basin in transition to the dune fields of the Badain Jaran Shamo. On satellite images the Gurinai Structure can be identified by two almost 100 km long, subparallel, N–S-striking lineaments, which may indicate tectonic deformations of late Quaternary sediments. To get a coherent picture of the structure a geophysical survey employing three electromagnetic methods – magnetotellurics (MT), transient electromagnetics (TEM), and geoelectrics (DC) – has been conducted to map the subsurface resistivity at different depth scales.The geophysical data interpretation for shallow and intermediate depth down to a few hundred meters links the subsurface distribution of electric resistivity to geomorphological units known from field work in reference with satellite images. The westerly lineament of the Gurinai Structure coincides with a subvertical change in electric resistivity. Together with geomorphological indications from fieldwork and the analysis of elevation data (SRTM), a tectonic deformation of unconsolidated sediments along a fault with an extensional component is interpreted. In the central and eastern part of the Gurinai Structure a shallow resistive subsurface layer can be traced into the first dunes of the Badain Jaran Shamo. This resistive subsurface layer is linked to the presence of fresh water, indicating infiltration from the dune field. Also, in the eastern part of the Gurinai Structure a resistive, approximately ENE-striking feature can be seen at intermediate depth, which is interpreted as a crystalline basement ridge. Towards the southern margin of the Gurinai Structure a trough-shaped unit with low resistivities and a thickness of about 1 km is identified and can be explained by a sediment package saturated with fluids of high salinity or substantial amounts of clay. The strike direction of the structure can be connected to the regional pattern of tectonic faults and seismicity.The interpretation of electromagnetic data at various depth scales contributes to the general understanding of the Ejina Basin's buildup and tectonic setting in the vicinity of the Gurinai Structure.  相似文献   
94.
This research focuses on the development of metal pollution in sediment cores from three estuaries in Northwest Spain: Viveiro, Ortigueira and Barqueiro. Pb, Cu, Co, Cr, Cd and Zn and total organic carbon were assessed using principal component analysis (PCA) in order to obtain background values, measure pollution levels and identify pollution sources. Results were interpreted by considering the local industrial history, grain size and C/N relationship. The pollution levels obtained bear a strong resemblance to those documented for of a moderately industrialised area. PCA identifies factors that reflect mainly temporal associations with metals. Sedimentation rates between 0.9 and 1.1 cm/year were determined. In Viveiro core levels of Cr pollution are associated with tanneries. In Ortigueira, high core levels of Cu and Co are linked to mining, and Cr levels to adjacent ultramafic rocks. Erosion of Holocene sediment causes high values of Co and Cr in the Barqueiro core. Cu increase in the three estuaries is related to fungicide use since 1910. Sea level rise appears to be affecting the marine characteristics of the sediments in Barqueiro. In Viveiro, the nature of the sediment reflects engineering work and land reclamation.  相似文献   
95.
Thermal water chemistry from the Biga Peninsula (NW Turkey) was investigated in order to discriminate among hydrochemical facies, and isotopic groups and identify the major geochemical processes. A systematic hydrogeochemical survey was carried out, incorporating new data as well as results from the previous studies. Results were used to further develop hydrogeological and geochemical models. Thermal water compositions were classified into four groups and the processes affecting evolution of water compositions were interpreted. Types 1, 2 and 3 are representatives of water corresponding to sulfate dominant fluids (mainly NaSO4-type), chloride dominant fluids (mainly NaCl-type), and bicarbonate dominant fluids (Na- or CaHCO3-type), respectively. Group 4 comprises the fluids with compositions that are not dominated by any distinctive anion. Groundwater infiltrates and circulates through the marbles of the Paleozoic basement. The isotopic composition of thermal waters revealed that deep infiltration of meteoric water took place in periods of changed climatic conditions.  相似文献   
96.
The Mesozoic–Cenozoic tectonic movement largely controls the northwest region of the Junggar Basin (NWJB), which is a significant area for the exploration of petroleum and sandstone-type uranium deposits in China. This work collected six samples from this sedimentary basin and surrounding mountains to conduct apatite fission track (AFT) dating, and utilized the dating results for thermochronological modeling to reconstruct the uplift history of the NWJB and its response to hydrocarbon migration and uranium mineralization. The results indicate that a single continuous uplift event has occurred since the Early Cretaceous, showing spatiotemporal variation in the uplift and exhumation patterns throughout the NWJB. Uplift and exhumation initiated in the northwest and then proceeded to the southeast, suggesting that the fault system induced a post spread-thrust nappe into the basin during the Late Yanshanian. Modeling results indicate that the NWJB mountains have undergone three distinct stages of rapid cooling: Early Cretaceous (ca. 140–115 Ma), Late Cretaceous (ca. 80–60 Ma), and Miocene–present (since ca. 20 Ma). These three stages regionally correspond to the Lhasa-Eurasian collision during the Late Jurassic–Early Cretaceous (ca. 140–125 Ma), the Lhasa-Gandise collision during the Late Cretaceous (ca. 80–70 Ma), and a remote response to the India-Asian collision since ca. 55 Ma, respectively. These tectonic events also resulted in several regional unconformities between the J3/K1, K2/E, and E/N, and three large-scale hydrocarbon injection events in the Piedmont Thrust Belt (PTB). Particularly, the hydrocarbon charge event during the Early Cretaceous resulted in the initial inundation and protection of paleo-uranium ore bodies that were formed during the Middle–Late Jurassic. The uplift and denudation of the PTB was extremely slow from 40 Ma onward due to a slight influence from the Himalayan orogeny. However, the uplift of the PTB was faster after the Miocene, which led to re-uplift and exposure at the surface during the Quaternary, resulting in its oxidation and the formation of small uranium ore bodies.  相似文献   
97.
The salt tectonics of the Glueckstadt Graben has been investigated in relation to major tectonic events within the basin. The lithologic features of salt sections from Rotliegend, Zechstein and Keuper show that almost pure salt is prominent in the Zechstein, dominating diapiric movements that have influenced the regional evolution of the Glueckstadt Graben. Three main phases of growth of the salt structures have been identified from the analysis of the seismic pattern. The strongest salt movements occurred at the beginning of the Keuper when the area was affected by extension. This activation of salt tectonics was followed by a Jurassic extensional event in the Pompeckj Block and Lower Saxony Basin and possibly in the Glueckstadt Graben. The Paleogene–Neogene tectonic event caused significant growth and amplification of the salt structures mainly at the margins of the basin. This event was extensional with a possible horizontal component of the tectonic movements. 3D modelling shows that the distribution of the initial thickness of the Permian salt controls the structural style of the basin, regionally. Where salt was thick, salt diapirs and walls formed and where salt was relatively thin, simple salt pillows and shallow anticlines developed.  相似文献   
98.
塔里木盆地西北缘柯坪冲断带构造变形特征   总被引:6,自引:1,他引:6       下载免费PDF全文
柯坪冲断带位于塔里木盆地西北缘,是新生代南天山褶皱冲断系的一部分.本文根据野外实际考察和地震剖面解释,总结了该冲断带的构造变形特征.它是发育于古生界中且以中寒武统膏盐层为主滑脱面的薄皮构造,是内部结构相对简单的叠瓦状冲断,因更新世才定型而具暴露式冲断前锋,有断层传播褶皱发育但已遭强烈剥蚀,前展式冲断.上新世晚期的冲断曾控制了磨拉石盆地发育(西域组砾岩),但该盆地已遭更新世的冲断推覆作用破坏.根据平衡剖面恢复,柯坪冲断带南部3排冲断层的总构造缩短量为29.1%-40.7%.  相似文献   
99.
The Qilian Block(QB) is a Precambrian micro-continent located in the northeastern Qinghai–Tibet Plateau.Prevalent Lower Paleozoic granitic magmatic rocks crop out in the QB. A new integrated study of zircon U-Pb ages and systematic whole-rock geochemical data for the Xindian, Dongjiazhuang and Xiaogaoling granites in the eastern segment of the QB constrains their emplacement ages, petrogenesis, and regional evolutionary history. U-Pb dating reveals that the Xindian granite was emplaced 454 Ma, and both the Dongjiazhuang and Xiaogaoling granites were emplaced ca. 440 Ma.Geochemical study shows that all granites belong to the high-K calc-alkaline to shoshonitic series and are S-type granites formed by partial melting of continental crust, mainly metagraywacke. We infer that these ca. 454–445 Ma granites formed in a syn-collisional setting during the continental collisional between the Qaidam and Qilian blocks.  相似文献   
100.
对阿尔金断裂科学问题的再认识   总被引:28,自引:2,他引:28  
据近年内阿尔金断裂研究的进展阐述了应深入解决的4个科学问题及其研究思路:1)阿尔金大型走滑断裂何时发生?变形年代学研究证明阿尔金断裂初始走滑的年龄在89~97 Ma,即从晚中生代-早新生代才开始出现;2)运动学研究包括隆升与走滑两个方面,需要进行大比例尺度的构造研究和变形组构研究,尤其是断裂两盘错距的确定,必须找准被断裂错移的同一构造-岩相带的界线;3)阿尔金断裂的划分意义,它的延伸和规模及对中国西部以及中亚大陆构造格架的影响;4)阿尔金断裂对两侧盆地沉积-构造演化的控制和影响.解决上述4个科学问题,对于重新认识中国西部大陆构造格架、中国西部成矿带的展布及对中国西部找油的战略评估都具有非常重要的意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号