首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   10篇
  国内免费   2篇
测绘学   2篇
大气科学   4篇
地球物理   7篇
地质学   48篇
自然地理   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1987年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
31.
基质胶结对土石混合体强度变形特性影响   总被引:1,自引:0,他引:1  
利用应变控制式静力三轴剪切仪,对具有不同胶结程度和含石量的土石混合体试样进行了固结不排水剪切试验;通过对制备的土石混合体试样的应力-应变关系、孔隙水压力变化、有效应力路径和抗剪强度指标等试验结果的对比分析,探讨了不同胶结程度土石混合体试样的差别及产生原因.试验结果表明:不同胶结程度土石混合体破坏方式可分为剪切带破坏和鼓肚变形破坏两种基本类型;胶结使得土石混合体应力应变关系和孔隙水压力变化与未胶结土石混合体差异明显,胶结作用对土石混合体的剪胀和软化特性影响显著.在块石软硬程度、形状及试样密实度相近的条件下,不论是否胶结或胶结程度如何,土石混合体有效内摩擦角φ'与无量纲粒度分布特征参数D50WBP/D60具有较好的线性相关性.试验结论为确定不同胶结程度土石混合体强度提供了参考.  相似文献   
32.
The NIST glass certified reference materials, SRM 610-617, have been widely adopted by the geological community as calibration samples for a variety of in situ trace element analytical techniques. There is now an urgent requirement for similar reference materials for in situ isotopic analytical techniques. We have analysed SRM 610, 612 and 614 for their Pb, Sr and Nd isotopic compositions using thermal ionisation mass spectrometry. Large differences in isotopic composition were observed between each CRM, suggesting a significant trace element content in the initial starting material (base glass). As a result, isotopic compositions for one CRM cannot be extrapolated to another, and each must be calibrated for use independently. We present the first compilation of working values for these glasses.  相似文献   
33.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   
34.
To understand and/or avoid small-scale chemical heterogeneities within geological materials prepared as normal thin sections, in situ multiple trace element determination coupled with the simultaneous microscopic observation of the sample during analysis is preferable. We have examined fifty trace elements in thin (< 30 μm) layers of the NIST SRM 614 and 616 glass reference materials by LA-ICP-MS using different pit diameters and internal standard elements (Ca and Si). Compositional heterogeneities of Tl, Bi, As and Cd were found in NIST SRM 614 and 616 at the spatial resolution of ca. 10 0 μm. Except for these elements, the RSDs of six determinations for most elements were better than 10% in NIST SRM 614 when ablation diameters were < 50 μm. The measured concentrations for most elements in NIST SRM 614 and 616 agree with previous values in the literature at the 95% confidence level with the exception of W and Bi. New LA-ICP-MS data for K, As and Cd are also reported. The results support the view that the latest LA-ICP-MS is a powerful and flexible analytical technique for the determination of multiple ultra-trace element compositions in geological materials prepared as normal thin sections of the type that has been used for polarising optical microscopic observations since the end of the 19th century.  相似文献   
35.
太阳辐射管理地球工程是应对气候变化的备用措施。地球工程模式比较计划(GeoMIP)是第六次国际耦合模式比较计划(CMIP6)的重要组成部分。GeoMIP设计了一系列理想化地球工程试验,包括直接减少太阳辐射强度、向平流层注入硫酸盐气溶胶、向海表上空云层注入气溶胶凝结核、增加海水反照率等。在GeoMIP的统一模拟框架下开展地球工程模拟试验,进一步揭示了不同地球工程措施对全球气候的影响和作用机理,从而帮助我们更好地认知气候系统对地球工程的响应过程。更多的中国气候模式参加GeoMIP将提升我国在地球工程研究和国际气候谈判中的国际影响力和话语权。  相似文献   
36.
Mg同位素标准参考物质SRM980的同位素不均一性研究   总被引:5,自引:1,他引:5  
朱祥坤  何学贤  杨淳 《地球学报》2005,26(Z1):12-14
摘要SRM980是由美国标准物质与技术研究所研制的Mg同位素标准参考物质。运用MC-ICPMS Mg高精度测试方法,对该参考物质中的Mg同位素成分是否均一性进行了研究。在所测定的5片SRM980镁金属碎片的同位素成分存在明显的不均一性,其最大差异为δ25 Mg为1.08, δ26Mg为2.12,是该实验室Mg同位素测定外部精度的一个数量级以上。  相似文献   
37.
The SRM 600 series of glasses, SRM 611 to SRM 619, which nominally contain 500 (SRM 610, 611), 50 (SRM 612, 613), 1 (SRM 614, 615) and 0.02 (SRM 616, 617) μg g−1 of sixty one elements are now being extensively used as microprobe standards. Recent compilations of the trace element concentrations, which include many new multi-element bulk analyses, do not all give the same value within the stated uncertainty; this observation appears to raise questions about the degree of homogeneity on a microscale reported from probe measurements. The ion microprobe cannot give absolute concentrations, but can accurately measure the abundance ratios between glasses of similar major element chemistry. Recent and new probe measurements show that, although the absolute concentrations are significantly lower than the nominal values, the average dilution factors are 12 : 1 : 0.02 : 0.0004 and close to weighed amounts. The consistency between the ratios of random samples of glasses (SRM 610/SRM 612 and SRM 611/SRM 613) strongly supports a high degree of homogeneity on all scales. The measured abundance ratios between two glasses can, therefore, act as a useful check on bulk measurement accuracy. A clear correlation in the SRM 610, 611/SRM 612, 613 ratios measured by ion probe and SRM 612 trace concentrations measured by bulk techniques demonstrates that SRM 610, 611 has a much more uniform trace content than SRM 612, 613.  相似文献   
38.
Geological reference materials (RMs) with variable compositions and NIST SRM 612 were analysed by isotope dilution mass spectrometry for bulk rock concentrations of chalcogen elements (sulfur, selenium and tellurium), rhenium and platinum‐group elements (PGEs: Ru, Pd, Os, Ir and Pt), including the isotope amount ratios of 187Os/188Os. All concentrations were obtained from the same aliquot after HCl‐HNO3 digestion in a high pressure asher at 320 °C. Concentrations were determined after chemical separation by negative TIMS, ICP‐MS and hydride generation ICP‐MS (Se, Te). As in previous studies, concentrations of the PGEs in most RMs were found to be highly variable, which may be ascribed to sample heterogeneity at the < 1 g level. In contrast, S, Se and Te displayed good precision (RSD < 5%) in most RMs, suggesting that part of the PGE budget is controlled by different phases, compared with the chalcogen budget. The method may minimise losses of volatile chalcogens during the closed‐system digestion and indicates the different extent of heterogeneity of chalcogens, Re and PGEs in the same sample aliquot. OKUM, SCo‐1, MRG‐1, DR‐N and MAG‐1 are useful RMs for the chalcogens. NIST SRM 612 displays homogenous distribution of S, Se, Te, Pt and Pd in 30 mg aliquots, in contrast with micro‐scale heterogeneity of Se, Pd and Pt.  相似文献   
39.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   
40.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号