首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   34篇
  国内免费   59篇
测绘学   2篇
地球物理   39篇
地质学   271篇
海洋学   30篇
综合类   3篇
自然地理   18篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   11篇
  2016年   13篇
  2015年   16篇
  2014年   20篇
  2013年   29篇
  2012年   12篇
  2011年   19篇
  2010年   15篇
  2009年   16篇
  2008年   25篇
  2007年   9篇
  2006年   22篇
  2005年   11篇
  2004年   16篇
  2003年   19篇
  2002年   21篇
  2001年   13篇
  2000年   11篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
排序方式: 共有363条查询结果,搜索用时 46 毫秒
61.
62.
塑性图是由卡萨格兰德(A·Casagrande)于1942年首次提出的,该图将阿太量(A·Aeterberg)界限(液限、塑限)应用于土质分类.本文根据塑性图判别理论并应用塑性图,对陕西省特殊土(黄土、三趾马红土、膨胀土等)进行了判别,结果为黄土位于CLY区,三趾马红土和膨胀土位于CHE区,其效果较好,达到了分类的目的.  相似文献   
63.
离子类土壤固化剂对高温冻土工程性质改良试验研究   总被引:2,自引:1,他引:1  
为了研究离子类土壤固化剂对青藏高原高温冻土工程性质的改良效果,分别选用酸性和碱性离子类土壤固化剂对冻结青藏粉质黏土进行了改良测试。塑性指数测试表明,两种固化剂的最优含量为0.2%。固化剂含量小于0.3%时,冻结温度相对原状土样没有明显的下降。对不同含量碱性和酸性固化土力学性质进行了测试,无侧限单轴抗压强度相对原状土样整体增大,碱性和酸性固化土抗压强度最大分别提高了78.7%和46.6%,最优配比(0.2%)的碱性和酸性固化土体积压缩系数随养护龄期增大而减小,两种固化土的体积压缩系数相对原状土样最大分别下降了80.0%和38.5%,固化效果明显。碱性固化土力学性质变化更显著,说明其更适合对青藏黏土进行改良。  相似文献   
64.
Given the contrasting behaviour observed for geomaterials, for example, during landslides of the flow type, this contribution proposes an original constitutive model, which associates both an elasto‐plastic relation and a Bingham viscous law linked by a mechanical transition criterion. This last is defined as the second‐order work sign for each material point, which is a general criterion for divergence instabilities. Finite element method with Lagrangian integration points is chosen as a framework for implementing the new model because of its well‐known ability to deal with both solid and fluid behaviours in large deformation processes. A first boundary model considering a sample of initially stable soil, a slope and an obstacle is performed. The results show the power of the constitutive model because the consistent evolution of initiation, propagation and arrest of the mudflow is described. A parametric study is led on various plastic and viscous parameters to determine their influence on the flow development and arrest. Finally, forces against the obstacle are compared with good agreement with those of other authors for the same geometry and a pure viscous behaviour. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
65.
The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in vln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM. The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.  相似文献   
66.
Layered rock masses can be modelled either as standard, orthotropic continua if the layer bending can be neglected or as Cosserat continua if the influence of layer bending is essential. This paper presents a finite element smeared joint model based on the Cosserat theory. The layers are assumed to be elastic with equal thickness and equal mechanical properties. All the cosserat parameters are expressed through the elastic properties of layers, layer thickness and joint stiffness. Plastic-slip as well as tensile-opening of layer interface (joint) are accounted for in a manner similar to the conventional non-associative plasticity theory. As an application, the behaviour of an excavation in a layered rock mass is examined. The displacement and stress fields given by smeared joint models based on the Cosserat continuum and the conventional anisotropic continuum approaches are compared with those obtained from the discrete joint model. The conventional anisotropic continuum model is found to break-down completely when the effective shear modulus in the direction parallel to layering is low in comparison to the shear modulus of the intact layer, whereas the Cosserat model is found to be capable of accurately reproducing complex load–deflection patterns irrespective of the differences in shear moduli. © 1998 John Wiley & Sons, Ltd.  相似文献   
67.
Isothermal chemo-elasto-plasticity of clays is discussed, to describe strains induced in clay by permeation of it with a low dielectric constant organic contaminant, in the presence of stress. The strain is crucial in controlling permeability changes in chemically affected clay barriers of landfills and impoundments. The theory encompasses chemical softening or yield surface reduction, coefficient of chemical reversible expansion or contraction due to mass concentration increase, as well as chemical sensitivity of bulk plastic modulus. The experiments on chemistry and stress dependent permeability of Sarnia clay performed by Fernandez and Quigley (1985, 1991) are interpreted using this model. The numerical representations of the chemo-plastic softening function and the chemo-elastic strain function, as well as plastic bulk modulus sensitivity to concentration are evaluated for dioxane and ethanol. Specific requirements for the tests for chemo-plastic behavior of clays are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   
68.
When applying an explicit integration algorithm in e.g. soil plasticity, the predicted stress point at the end of an elastoplastic increment of loading might not be situated on the updated current yield surface. This so-called yield surface drift could generally be held under control by using small integration steps. Another possibility, when circumstances might demand larger steps, is to adopt a drift correction method. In this paper, a drift correction method for mixed control in soil plasticity, under drained as well as undrained conditions, is proposed. By simulating triaxial tests in a Constitutive Driver, the capability and efficiency of this correction method, under different choices of implementation, have been analysed. It was concluded that the proposed drift correction method, for quite marginal additional computational cost, was able to correct successfully for yield surface drift giving results in close agreement to those obtained with a very large number of integration steps. © 1997 by John Wiley & Sons, Ltd.  相似文献   
69.
This paper presents a new generalized effective stress model, referred to as MIT-S1, which is capable of predicting the rate independent, effective stress–strain–strength behaviour of uncemented soils over a wide range of confining pressures and densities. Freshly deposited sand specimens compressed from different initial formation densities approach a unique condition at high stress levels, referred to as the limiting compression curve (LCC), which is linear in a double logarithmic void ratio, e, mean effective stress space, p′. The model describes irrecoverable, plastic strains which develop throughout first loading using a simple four-parameter elasto-plastic model. The shear stiffness and strength properties of sands in the LCC regime can be normalized by the effective confining pressure and hence can be unified qualitatively, with the well-known behaviour of clays that are normally consolidated from a slurry condition along the virgin consolidation line (VCL). At lower confining pressures, the model characterizes the effects of formation density and fabric on the shear behaviour of sands through a number of key features: (a) void ratio is treated as a separate state variable in the incrementally linearized elasto-plastic formulation: (b) kinematic hardening describing the evolution of anisotropic stress–strain properties: (c) an aperture hardening function controls dilation as a function of ‘formation density’; and (d) the use of a single lemniscate-shaped yield surface with non-associated flow. These features enable the model to describe characteristic transitions from dilative to contractive shear response of sands as the confining pressure increases. This paper summarizes the procedures used to select input parameters for clays and sands, while a companion paper compares model predictions with measured data to illustrate the model capability for describing the shear behaviour of clays and sands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
70.
The action of tunnel excavation reduces the in-situ stresses along the excavated circumference and can therefore be simulated by unloading of cavities from the in-situ stress state. Increasing evidence suggests that soil behavior in the plane perpendicular to the tunnel axis can be modelled reasonably by a contracting cylindrical cavity, while movements ahead of an advancing tunnel heading can be better predicted by spherical cavity contraction theory. In the past, solutions for unloading of cavities from in-situ stresses in cohesive-frictional soils have mainly concentrated on the small strain, cylindrical cavity model. Large strain spherical cavity contraction solutions with a non-associated Mohr–Coulomb model do not seem to be widely available for tunnel applications. Also, cavity unloading solutions in undrained clays have been developed only in terms of total stresses with a linear elastic-perfectly plastic soil model. The total stress analyses do not account for the effects of strain hardening/softening, variable soil stiffness, and soil stress history (OCR). The effect of these simplifying assumptions on the predicted soil behavior around tunnels is not known. In this paper, analytical and semi-analytical solutions are presented for unloading of both cylindrical and spherical cavities from in-situ state of stresses under both drained and undrained conditions. The non-associated Mohr-Coulomb model and various critical state theories are used respectively to describe the drained and undrained stress-strain behaviors of the soils. The analytical solutions presented in this paper are developed in terms of large strain formulations. These solutions can be used to serve two main purposes: (1) to provide models for predicting soil behavior around tunnels; (2) to provide valuable benchmark solutions for verifying various numerical methods involving both Mohr–Coulomb and critical state plasticity models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号