首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   48篇
地质学   82篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   13篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   7篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2003年   1篇
  1992年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
51.
东秦岭发现~1.9Ga钼矿床——河南龙门店钼矿床Re-Os定年   总被引:8,自引:6,他引:2  
河南龙门店钼矿床位于华北陆块南缘熊耳山地区,其赋矿围岩为新太古代一古元古代太华群片麻岩.6件辉钼矿样品的Re-Os模式年龄最小值为1868±6Ma,最大值为2044±14Ma,等时线年龄为1875Ma,表明该矿床形成于早元古代,是目前我国已知最老的钼矿床.  相似文献   
52.
The Baoshan Cu-polymetallic deposit is a recently discovered skarn deposit in the northern Lesser Xing’an Range, NE China. The orebodies are mainly hosted in the contact zone between granitic intrusions and Lower Cambrian dolomitic crystalline limestones or skarns. We present here zircon U–Pb and molybdenite Re–Os age data, whole-rock geochemistry, and zircon Hf isotopic data to constrain the geodynamic mechanisms of igneous activity and metallogenesis within the Baoshan Cu–polymetallic deposit. LA–ICP–MS zircon U–Pb dating suggests that a hornblende–quartz monzonite and porphyritic biotite granite were emplaced at 252.45 ± 0.70 Ma and 251.10 ± 0.98 Ma, respectively. Molybdenite separated from ore-bearing quartz veins or skarn-type ores yields a weighted mean model age of 250.3 ± 3.4 Ma, which coincide with the emplacement of the igneous rocks. These data suggest that the Late Permian-Early Triassic magmatic and mineralization event led to the formation of the Baoshan Cu–polymetallic deposit. Granitic intrusions are closely associated with this mineralization and have high contents of SiO2 (60.90–68.98 wt.%), Al2O3 (15.15–16.98 wt.%) and K2O (2.77–4.17 wt.%), with A/CNK ratios of 0.86–0.96. These granites are classified as metaluminous and high-K calc-alkaline I-type granites, and are enriched in Rb, Th, U, and K, and depleted in Nb, Ta, P, and Ti. Moreover, Moreover, the hornblende–quartz monzonite and porphyritic biotite granite have geochemical characteristics similar to adakites and island arc calc-alkaline rocks, respectively. In situ zircon Hf isotope data on the hornblende–quartz monzonite samples show εHf(t) values from +0.1 to +3.1, and porphyritic biotite granite samples exhibit heterogeneous εHf(t) values from −5.4 to +1.1. The geochemical and isotopic data for the Baoshan intrusions indicate that the Late Permian–Early Triassic continental–continental collision caused over thickening and delamination of the lower crust. Partial melting of delaminated lower crust formed the primary adakitic magmas, which may have reacted with surrounding mantle peridotite during ascent. Hornblende–quartz monzonite was formed by the emplacement of the adakitic magmas, whereas the formation of the porphyritic biotite granite was caused by the mixing of adakitic magmas with ancient crustal materials during ascent. Moreover, ore-forming materials were typically derived from the adakitic magmas with high oxygen fugacity, which incorporated significant amounts of ore-forming elements. Based on the regional geological history and the new geochemical and isotopic data from intrusions, we suggest that diagenesis and mineralization of the Baoshan Cu–polymetallic deposit took place in a transitional tectonic setting from collisional orogeny to extension, after collision of the North China Plate and Songnen Block, during the latter stages of the Xingmeng orogeny.  相似文献   
53.
The Siah-Kamar porphyry Mo deposit, located in the western Alborz-Azarbayjan magmatic belt, is the first and largest Mo deposit in the Iran. This deposit is mainly hosted by an I-type, shoshonitic quartz monzonite to monzonite intrusion and also extends in the surrounding lower to middle Eocene volcanic rocks. The geochemical features of the Siah-Kamar intrusion show enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), and significant negative anomalies of Nb, Ta and Ti analogues to the magmas derived from metasomatized sub-continental mantle. Porphyry molybdenum mineralization is associated with potassic, sericitic, argillic, and propylitic alteration zones. Mineralization occurs in disseminated form, in veins/veinlets and in hydrothermal breccias. The main ore minerals comprise molybdenite, chalcopyrite and bornite. The Microthermometric analyses at Siah-Kamar deposit showed that the halite-bearing inclusions contain high salinity (30.9–60.7 wt% NaCl eq.) with homogenization temperature ranging from 226 °C to 397 °C. The homogenization temperature of two phase liquid-rich inclusions range between 224 °C and 375 °C. The salinity of this type inclusions range from 0.6 to 7.5 wt% NaCl equivalent. The two-phase vapor-rich fluid inclusions homogenized at 270 °C to 397 °C. The salinity of this type fluid inclusions lie within the range of 0.6 to 4.24 wt% NaCl equivalent. Coexisting two phase V-rich and L-rich fluid inclusions in quartz associated with molybdenite provide evidence for boiling at 270 °C to 400 °C. The δ18Owater values of quartz in the molybdenite-bearing veins vary from +2.16 to +4.05‰, suggesting a magmatic origin for the ore-forming fluids. Re-Os isotopic dating of molybdenite indicated a mineralization age of 41.9 ± 3.6 Ma. The Re concentration in molybdenite suggests incorporation of mantle derived melt with crustal materials. The late Eocene magmatism along the western Alborz-Azarbayjan magmatic zone resulted from the Neo-Tethys subduction beneath the Iranian plateau. The Siah-Kamar monzonitic intrusion hosting the Mo deposit, could be considered as an example among the late Eocene intrusions within the western Alborz-Azarbayjan magmatic zone for any further exploration in this zone.  相似文献   
54.
宁陕地区月河坪钼矿床位于南秦岭多金属成矿带,属于夕卡岩型钼矿。本文采用辉钼矿Re-Os同位素定年方法,精确地测定月河坪钼矿的成矿时代。分析结果显示,5件辉钼矿样品Re-Os同位素模式年龄的变化范围小,集中在189.8Ma和195.4Ma之间,获得加权平均年龄值191.4±1.6Ma,与等时线回归计算得到的年龄值193.6±3.5Ma在误差范围内相吻合。结果说明成矿时代为早侏罗纪,成矿作用属于中国北部燕山期大规模成矿期的一部分。结合已报道的成矿年龄资料,月河坪钼矿床可能形成于扬子板块与华北板块的后碰撞造山作用过程,但有可能受到后期岩浆活动的改造和破坏。同时推测在南秦岭地区存在印支末期到燕山早期的成矿事件,这对于秦岭造山带尤其是南秦岭地区钼矿资源勘探具有借鉴意义。  相似文献   
55.
Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术   总被引:8,自引:0,他引:8  
本文介绍了Re-Os同位素定年的基本原理、技术发展及应用现状;综述了样品分解和Re-Os分离富集的主要方法,重点对ICP-MS法进行Re-Os同位素定年做了较详尽的介绍,包括质量分馏校正、干扰校正、含量初测、取样量的确定、稀释剂的稀释比及稀释剂加入量等,以确保高精度测试;评述了ICP-MS最常见的测定对象-辉钼矿中Re-Os的失耦现象及降低其对Re-Os同位素定年影响的对策,文中描述了由测定同位素比值计算含量时的误差传递公式并重申了最佳稀释比。最后,指出了Re-Os同位素定年方法研究中应该关注的工作方向。  相似文献   
56.
This study evaluates bioleaching treatments to remove copper from the Sarcheshmeh (Iran) molybdenite concentrate using a native strain of Acidithiobacillus ferrooxidans. Copper content of the concentrate was 0.83 wt.% as chalcopyrite. The tests showed selective dissolution of copper (chalcopyrite) from molybdenite concentrate. Up to 65% of copper content of molybdenite concentrate was removed via bioleaching with a native strain of A. ferrooxidans in less than 15 days. Ferrous sulfate, sulfur or pyrite was added to culture medium to enhance the activity of bacteria. Sulfur was the preferred additional source of energy for removing copper from molybdenite via bioleaching with A. ferrooxidans. In addition, 9K or Norris medium was also used as the culture medium in the experiments. The experiments showed that application of Norris medium would be better than that of 9K medium in order to remove copper from molybdenite via bioleaching. These results were backed up due to the fact that the cost of Norris medium was also less than that of 9K medium.  相似文献   
57.
Host rocks to the Aitik Cu–Au–Ag deposit in northern Sweden are strongly altered and deformed Early Proterozoic mica(-amphibole) schists and gneisses. The deposit is characterised by numerous mineralisation styles, vein and alteration types. Four samples were selected for Re–Os molybdenite dating and 12 samples for U–Pb titanite dating in order to elucidate the magmatic/hydrothermal and metamorphic history following primary ore deposition in the Aitik Cu–Au–Ag deposit. Samples represent dyke, vein and alteration assemblages from the ore zone, hanging wall and footwall to the deposit. Re–Os dating of molybdenite from deformed barite and quartz veins yielded ages of 1,876±10 Ma and 1,848±8 Ma, respectively. A deformed pegmatite dyke yielded a Re–Os age of 1,848±6 Ma, and an undeformed pegmatite dyke an age of 1,728±7 Ma. U–Pb dating of titanite from a diversity of alteration mineral associations defines a range in ages between 1,750 and 1,805 Ma with a peak at ca. 1,780 Ma. The ages obtained, together with previous data, bracket a 160-Ma (1,890–1,730 Ma) time span encompassing several generations of magmatism, prograde to peak metamorphism, and post-peak cooling; events resulting in the redistribution and addition of metals to the deposit. This multi-stage evolution of the Aitik ore body suggests that the deposit was affected by several thermal events that ultimately produced a complex ore body. The Re–Os and U–Pb ages correlate well with published regional Re–Os and U–Pb age clusters, which have been tied to major magmatic, hydrothermal, and metamorphic events. Primary ore deposition at ca. 1,890 Ma in connection with intrusion of Haparanda granitoids was followed by at least four subsequent episodes of metamorphism and magmatism. Early metamorphism at 1,888–1,872 Ma overlapping with Haparanda (1,890–1,880 Ma) and Perthite-monzonite (1,880–1,870 Ma) magmatism clearly affected the Aitik area, as well as late metamorphism and Lina magmatism at 1,810–1,774 Ma and TIB1 magmatism at 1,800 Ma. The 1,848 Ma Re–Os ages obtained from molybdenite in a quartz vein and pegmatite dyke suggests that the 1,850 Ma magmatism recorded in parts of northern Norrbotten also affected the Aitik area.  相似文献   
58.
New Re-Os molybdenite ages provide constraints on the timing of Late Archean Cu-Au-Mo mineralization in the northern Carajás Mineral Province. Molybdenite from the Gameleira iron oxide Cu-Au-Mo deposit yielded an age of 2,614±14 Ma. This age overlaps within its analytical error with Re-Os ages of molybdenite from the Serra Verde Cu-Au-Mo vein deposit (2,609±13 Ma) and from the nearby small Garimpo Fernando gold mining operation (2,592±13 and 2,602±13 Ma), which is probably related to the latter. The geochronological data imply that the hydrothermal Cu-Au-Mo mineralization in these three deposits was epigenetic and coincides with a regional tectonic regime changing from dextral transtension and clastic sedimentation at 2.7–2.6 Ga to sinistral transpression and inversion at 2.6 Ga. Previously reported stable isotope and microthermometric data are compatible with a magmatic affiliation of the Cu-Au-Mo ores at Gameleira and Serra Verde. A genetic relationship of mineralization may therefore exist with 2.56–2.76 Ga Archean alkaline granitoids or with 2.6–2.7 calc-alkaline to tholeiitic volcanic-arc type magmatism.Editorial handling: F. Tornos  相似文献   
59.
Granites and primary tin mineralization in the Erzgebirge were dated using (1) conventional U–Pb dating of uraninite inclusions in mica, (2) Rb–Sr dating of inclusions in quartz that represent highly evolved melts, (3) Re–Os dating of magmatic–hydrothermal molybdenite, and (4) chemical Th–U–Pb dating of uraninite. Conventional isotope dilution and thermal ion mass spectrometry and chemical Th–U–Pb dating of uraninite in granites from the Ehrenfriedersdorf mining district provide ages of 323.9 ± 3.5 Ma (2σ; Greifenstein granite) and 320.6 ± 1.9 and 319.7 ± 3.4 Ma (2σ, both Sauberg mine), in agreement with U–Pb apatite ages of 323.9 ± 2.9 and 317.3 ± 1.6 Ms (2σ, both Sauberg mine). Rb–Sr analysis of melt inclusions from Zinnwald gives highly radiogenic Sr isotopic compositions that, with an assumed initial Sr isotopic composition, permit calculation of precise ages from single inclusions. The scatter of the data indicates that some quartz-hosted melt inclusions have been affected by partial loss of fluid exsolved from the melt inclusion. Re–Os dating of two molybdenite samples from Altenberg provides ages of 323.9 ± 2.5 and 317.9 ± 2.4 Ma (2σ). Together with age data from the literature, our new ages demonstrate that primary tin mineralization and the emplacement of the large Sn-specialized granites in the Erzgebirge fall in a narrow range between 318 and 323 Ma. Primary Sn mineralization occurred within a short interval during post-collisional collapse of the Variscan orogen and was essentially synchronous over the entire Erzgebirge. In contrast to earlier claims, no systematic age difference between granites of the eastern and western Erzgebirge was established. Furthermore, our data do not support a large age range for Late-Variscan granites of the Erzgebirge (330–290 Ma), as has been previously suggested.  相似文献   
60.
东秦岭地区钼矿床中辉钼矿的铼含量及多型特征   总被引:9,自引:0,他引:9  
辉钼矿是铼的最主要载体矿物。研究表明,东秦岭地区不同类型钼矿床中,辉钼矿的Re平均含量多为10—20ppm,其中仅黄龙铺碳酸岩脉型钼(铅)矿床的辉钼矿平均含Re高达152.5ppm。尽管辉钼矿中的铼含量有变化,但均呈类质同象取代钼而存在。同时,这些矿床辉钼矿的铼含量差异,主要取决于成矿热流体中原始铼含量。辉钼矿多型有2H型和2H+3R混合型。铼含量和成矿温度对辉钼矿多型没有影响,故辉钼矿多型对于钼矿床类型没有标型意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号